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ABSTRACT 

 Global decline of amphibian populations has been linked to various anthropogenic 

stressors.  Recent studies have quantified the influences of cropland agriculture and 

deforestation; however, few have examined the impacts of allowing cattle access in 

wetlands on resident amphibians.  I compared four wetlands exposed to cattle grazing for 

>10 years against four wetlands that had not been grazed for >10 years, at the University 

of Tennessee Plateau Research and Education Center.  At each wetland I measured 

species richness, diversity, and species-specific relative abundance of postmetamorphic 

amphibians captured in pitfall traps and during breeding call surveys, amphibian egg 

mass abundance, shoreline vegetation structure, and soil compaction from March – 

August 2005 and 2006.  Pathogen prevalence and histopathological changes were 

measured from a subsample of opportunistically collected amphibians.  Landscape 

characteristics were quantified and related to amphibian community structure.  Relative 

abundance of green frog metamorphs was 9.8X greater in 2006 and 2.3X greater in 2005 

at non-access wetlands.  Relative abundance of American toads was 68X and 76X greater 

at cattle-access wetlands in 2005 and 2006, respectively.  Breeding call abundance of 

American toad, Fowler’s toad, and Cope’s gray treefrog was 4 – 25X greater at cattle-

access wetlands in 2006.  There were 2X more spring peepers and pickerel frogs calling 

at non-access wetlands in 2005 and 2006, respectively.  Species richness, diversity, and 

egg mass abundance were not significantly different between land-use types each year.  

In general, body size followed a density-dependent relationship across species.  Height 

and percent horizontal and vertical cover of shoreline vegetation were 74%, 25% and 

84% greater, respectively, in non-access wetlands in 2005; trends were similar in 2006.  
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Soil compaction was 55% greater at cattle-access wetlands.  Pathogen prevalence and 

histopathological changes did not differ between land uses.  Landscape analyses revealed 

species-specific associations related to wetland isolation and geometric complexity of the 

landscape between wetlands.  My results suggest that cattle influence community 

composition and postmetamorphic body size of amphibians, but effects are species-

specific.  Differences in postmetamorphic abundance may be related to less vegetation 

structure and lower water quality at cattle-access wetlands.  Fencing cattle from wetlands 

may be a prudent conservation strategy for some amphibian species. 

 
 

 



www.manaraa.com

 vii

TABLE OF CONTENTS 
 

CHAPTER I: INTRODUCTION........................................................................................ 1 
 

CHAPTER II: IMPACTS OF CATTLE ACCESS IN WETLANDS ON 
POSTMETAMORPHIC AMPHIBIANS ........................................................................... 8 

Introduction..................................................................................................................... 8 
Methods......................................................................................................................... 13 

Study Area ................................................................................................................ 13 
Amphibian Species Richness, Relative Abundance, and Body Size ........................ 14 

Terrestrial capture ................................................................................................ 14 
Biological processing............................................................................................ 16 
Breeding call surveys ............................................................................................ 17 

Egg Mass Abundance ............................................................................................... 18 
Emergent Shoreline Vegetation ................................................................................ 19 
Soil Compaction........................................................................................................ 20 
Waterbird Prevalence................................................................................................ 20 
Pathogen (bacteria, viruses and parasitic) Prevalence .............................................. 21 

Specimen collection .............................................................................................. 21 
Pathological sampling .......................................................................................... 21 

Malformation and Trematode Prevalence................................................................. 22 
Statistical Analyses ................................................................................................... 22 

Results........................................................................................................................... 26 
Cattle Land-use Effect .............................................................................................. 26 
Month Effect ............................................................................................................. 31 
Prediction Models ..................................................................................................... 36 
Pathology .................................................................................................................. 37 

Discussion..................................................................................................................... 40 
Species-specific Abundance ..................................................................................... 41 

Shoreline vegetation.............................................................................................. 41 
Water quality......................................................................................................... 46 

           Breeding call surveys ..............................................................................................49 
Egg Mass Abundance ............................................................................................... 49 
Amphibian Community Metrics ............................................................................... 50 
Habitat Models.......................................................................................................... 51 
Monthly Trends......................................................................................................... 54 
Postmetamorphic Body Size ..................................................................................... 56 
Pathology .................................................................................................................. 57 

Green frog metamorphs. ....................................................................................... 57 
Opportunistic captures.......................................................................................... 63 
Malformed individuals. ......................................................................................... 67 

Conclusions and Conservation Recommendations....................................................... 70 
 
 
 



www.manaraa.com

 viii

CHAPTER III: RELATIONSHIPS BETWEEN AGRICULTURAL LANDSCAPE 
CHARACTERISTICS AND AMPHIBIAN COMMUNITY STRUCTURE .................. 77 

Introduction................................................................................................................... 77 
Methods......................................................................................................................... 81 
Results........................................................................................................................... 85 
Discussion..................................................................................................................... 86 
Conservation Recommendations and Future Research................................................. 91 

 
CHAPTER IV: CONCLUSIONS..................................................................................... 94 

 
LITERATURE CITED................................................................................................... 100 
 
APPENDIX I ...................................................................................................................128 

APPENDIX II ..................................................................................................................186  
 
APPENDIX III.................................................................................................................198 

VITA................................................................................................................................200



www.manaraa.com

 ix

LIST OF APPENDICES 
 

APPENDIX I: TABLES AND FIGURES...................................................................... 128 
 

APPENDIX II: PATHOGEN TESTING PROCEDURES............................................. 186 
Bacterial, viral, and parasitic testing procedures .................................................... 187 

Histology. ............................................................................................................ 187 
Bacterial cultures................................................................................................ 187 
Virus isolation. .................................................................................................... 190 
Electron microscopy of fecal samples................................................................. 190 
PCR for Cryptosporidium spp ............................................................................ 191 
Fecal flotation ..................................................................................................... 193 
PCR for Ranavirus .............................................................................................. 193 
Fungal cultures for opportunistically collected individuals ............................... 195 
White blood cell count of an opportunistically collected individual .................. 195 

Malformation and trematode testing procedures .................................................... 196 
Clearing Procedure ............................................................................................ 196 
Electron microscopy for orbit structures ............................................................ 196 

 
 APPENDIX III: REPORTED AMPHIBIAN SPECIES IN CUMBERLAND COUNTY      
 ....................................................................................................................................... 198



www.manaraa.com

 x

LIST OF TABLES 
 
Table 1.  Mean cattle abundance and density at four cattle-access wetlands on the 
University of Tennessee Plateau Research and Education Center, Crossville, Tennessee, 
March – August 2005 and 2006...................................................................................... 129 
 
Table 2.  Relative daily abundance of amphibians between cattle land uses at eight 
wetlands on the University of Tennessee Plateau Research and Education Center, 
Crossville, Tennessee, March – August 2005 and 2006................................................. 130 
 
Table 3.  Relative daily abundance for each age and sex class of amphibian species that 
differed significantly in relative daily abundance between cattle land uses (see Table 2) at 
eight wetlands on the University of Tennessee Plateau Research and Education Center, 
Crossville, Tennessee, March – August 2005 and 2006................................................. 133 
 
Table 4.  Mean breeding call index of amphibians between cattle land uses at eight 
wetlands on the University of Tennessee Plateau Research and Education Center, 
Crossville, Tennessee, March – August 2005 and 2006................................................. 135 
 
Table 5.  Abundance of amphibian egg masses between cattle land uses at eight wetlands 
on the University of Tennessee Plateau Research and Education Center, Crossville, 
Tennessee, March – August 2005 and 2006 ................................................................... 137 
 
Table 6.  Amphibian species richness and diversity between cattle land uses at eight 
wetlands on the University of Tennessee Plateau Research and Education Center, 
Crossville, Tennessee, March – August 2005 and 2006................................................. 139 
 
Table 7.  Mass (g) of postmetamorphic amphibians between cattle land uses at eight 
wetlands on the University of Tennessee Plateau Research and Education Center, 
Crossville, Tennessee, March – August 2005 and 2006................................................. 141 
 
Table 8.  Snout-vent length (mm) of postmetamorphic amphibians between cattle land 
uses at eight wetlands on the University of Tennessee Plateau Research and Education 
Center, Crossville, Tennessee, March – August 2005 and 2006 .................................... 143 
 
Table 9.  Emergent shoreline vegetation characteristics and soil compaction between 
cattle land uses at eight wetlands on the University of Tennessee Plateau Research and 
Education Center, Crossville, Tennessee, March – August 2005 and 2006 ................... 145 
 
Table 10.  Relative daily abundance of definitive avian hosts of Ribeiroia ondatrae 
between cattle land uses at eight wetlands on the University of Tennessee Plateau 
Research and Education Center, Crossville, Tennessee, March – August 2005 and 2006
......................................................................................................................................... 146 



www.manaraa.com

 xi

Table 11.  Relative daily abundance of amphibians among months at eight wetlands on 
the University of Tennessee Plateau Research and Education Center, Crossville, 
Tennessee, March – August 2005 and 2006 ................................................................... 147 
 
Table 12.  Mean breeding call index of amphibians among months at eight wetlands on 
the University of Tennessee Plateau Research and Education Center, Crossville, 
Tennessee, March – August 2005 and 2006 ................................................................... 150 
 
Table 13.  Amphibian species richness and diversity among months at eight wetlands on 
the University of Tennessee Plateau Research and Education Center, Crossville, 
Tennessee, March – August 2005 and 2006. .................................................................. 153 
 
Table 14. Abundance of amphibian egg masses among months at eight wetlands on the 
University of Tennessee Plateau Research and Education Center, Crossville, Tennessee, 
March – August 2005 and 2006...................................................................................... 155 
 
Table 15.  Emergent shoreline vegetation characteristics and soil compaction among 
months at eight wetlands on the University of Tennessee Plateau Research and Education 
Center, Crossville, Tennessee, March – August 2005 and 2006 .................................... 157 
 
Table 16.  Multiple linear regression models predicting mean daily capture of 
postmetamorphic amphibians using various environmental co-factors of cattle land use 
and larval abundance at eight wetlands on the University of Tennessee Research and 
Education Center on the Cumberland Plateau, Crossville, Tennessee, March – August 
2005................................................................................................................................. 159 
 
Table 17.  Multiple linear regression models predicting mean daily capture of 
postmetamorphic amphibians using various environmental co-factors of cattle land use 
and larval abundance at eight wetlands on the University of Tennessee Research and 
Education Center on the Cumberland Plateau, Crossville, Tennessee, March – August 
2006................................................................................................................................. 161 
 
Table 18.  Prevalence of histological changes in green frog (Rana clamitans) metamorphs 
collected at cattle-access and non-access wetlands on the University of Tennessee Plateau 
Research and Education Center, Crossville, Tennessee, June 2005 ............................... 163 
 
Table 19.  Prevalence of bacteria isolates associated with green frog (Rana clamitans) 
metamorphs collected at cattle-access and non-access wetlands on the University of 
Tennessee Plateau Research and Education Center, Crossville, Tennessee, June 2005. 164 
 
Table 20.  Prevalence of parasites in tissues from green frog (Rana clamitans) 
metamorphs collected at cattle-access and non-access wetlands on the University of 
Tennessee Plateau Research and Education Center, Crossville, Tennessee, June 2005. 165



www.manaraa.com

 xii

Table 21.  Parasitic load in feces from green frog (Rana clamitans) metamorphs collected 
at cattle-access and non-access wetlands on the University of Tennessee Plateau Research 
and Education Center, Crossville, Tennessee, June 2005............................................... 166 
 
Table 22.  Prevalence of malformation types in malformed amphibians captured in pitfall 
traps between cattle land uses at eight wetlands on the University of Tennessee Plateau 
Research and Education Center, Crossville, Tennessee, March – August 2005 and 2006.
......................................................................................................................................... 167 
 
Table 23.  Bacteria cultured from five injured amphibians opportunistically collected 
from cattle-access and non-access wetlands on the University of Tennessee Plateau 
Research and Education Center, Crossville, Tennessee, March – August 2005 and 2006.
......................................................................................................................................... 168 
 
Table 24.  Multiple linear regression models predicting total abundance of 
postmetamorphic amphibians using landscape metrics of a 1-km buffer surrounding each 
of eight wetlands on the University of Tennessee Research and Education Center on the 
Cumberland Plateau, Crossville, Tennessee, March – August 2005 and 2006 .............. 170 
 
Table 25.  Multiple linear regression models predicting total abundance of 
postmetamorphic amphibians using landscape metrics of a 0.5-km buffer surrounding 
each of eight wetlands on the University of Tennessee Research and Education Center on 
the Cumberland Plateau, Crossville, Tennessee, March – August 2005 and 2006 ........ 172 



www.manaraa.com

 xiii

LIST OF FIGURES 

Figure 1.  Cattle access (1 – 4) and non-access (5 – 8) wetlands at the University of 
Tennessee Plateau Research and Education Center, Cumberland County, Tennessee, 
USA, 2004....................................................................................................................... 174 
 
Figure 2.  Schematic of postmetamorphic amphibian sampling at study wetlands on the 
University of Tennessee Plateau Research and Education Center, Crossville, Tennessee, 
2005 – 2006..................................................................................................................... 175 
 
Figure 3.  Species composition and total richness (S) of amphibians captured in pitfalls 
between cattle land uses at eight wetlands on the University of Tennessee Plateau 
Research and Education Center, Crossville, Tennessee, March – August 2005 (a) and 
2006 (b)........................................................................................................................... 176 
 
Figure 4.  Relationship between mean soil compaction and position (i.e., distance, m) that 
measurements were taken from the shoreline at four non-access (a) and four cattle-access 
(b) wetlands at the University of Tennessee Plateau Research and Education Center, 
Crossville, Tennessee, March – August 2005 and 2006................................................. 177 
 
Figure 5.  Species composition and total richness (S) of amphibians captured in pitfalls 
among months at eight wetlands on the University of Tennessee Plateau Research and 
Education Center, Crossville, Tennessee, March – August 2005................................... 179 
 
Figure 6.  Species composition and total richness (S) of amphibians captured in pitfalls 
among months at eight wetlands on the University of Tennessee Plateau Research and 
Education Center, Crossville, Tennessee March – August 2006.................................... 180 
 
Figure 7.  Rasterized land cover types of the landscape extent used in amphibian analyses 
overlaid on the digital orthophoto quadrangle for Cumberland County, Tennessee, 2004.
......................................................................................................................................... 181 
 
Figure 8.  Canonical correspondence analysis of relative amphibian abundance (natural-
log transformed) and landscape metrics of a 1-km landscape around each of eight 
wetlands at the University of Tennessee Plateau Research and Education Center, 
Crossville, Tennessee, March – August 2005 and 2006................................................. 182 
 
Figure 9.  Canonical correspondence analysis of relative amphibian abundance (natural-
log transformed) and landscape metrics of a 0.5-km buffer around each of eight wetlands 
at the University of Tennessee Plateau Research and Education Center, Crossville, 
Tennessee, March – August 2005 and 2006 ................................................................... 184 



www.manaraa.com

 1

CHAPTER I 
 

INTRODUCTION 

In 2004, the Global Amphibian Assessment (GAA) released a report indicating 

that 32% of amphibian species were in decline and in threat of extinction (GAA 2004).  

Since 1980, 122 known species have gone extinct or have not been found recently and are 

considered likely extinct (GAA 2004).  Tennessee is home to 21 anuran and around 40 

salamander species, making it the most species-rich state in the Southeast (TWRA 2004).  

The Tennessee Wildlife Resources Agency (TWRA) lists 35% of the amphibian species 

in Tennessee in concern of decline (TWRA 2005).  These declines are considered 

unprecedented, particularly because similar rates of declines are not occurring for bird 

and mammal species (i.e., 12% and 23% in decline, respectively, GAA 2004).  This is 

concerning because amphibians are important components of aquatic and terrestrial 

ecosystems (Whiles et al. 2006), and some have potential human medicinal properties 

(e.g., skin peptides destroying HIV, VanCompernolle et al. 2005).  They also are 

considered sentinels of environmental deterioration, because contaminants can pass easily 

through their skin, many species depend on both aquatic and terrestrial environments, and 

they are prone to desiccation following metamorphosis (Alford and Richards 1999).  Also 

due to their typical biphasic life cycle, they are exposed to various pathogens and 

predators in both aquatic and terrestrial environments.   Decline in amphibian populations 

could signal the onset of environmental degradation (Alford and Richards 1999), and 

mass extinctions could destabilize the structure of aquatic and terrestrial trophic levels 

(Whiles et al. 2006).  There are several hypotheses for amphibian declines, most which 

are related to anthropogenic causes.  These hypotheses include global climate change, 
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UV-B radiation (wavelength range 280 – 320 nm), pathogens (bacteria, fungi, viruses and 

parasites), water contamination, introduction of exotic species, exploitation for food or 

pets, and habitat deterioration or destruction (Houlahan et al. 2000, Collins and Storfer 

2003, Kiesecker et al. 2004, Stuart et al. 2004).    

Anthropogenic influences on atmospheric conditions may be contributing to 

large-scale changes in global distribution and persistence of amphibian populations 

(Beebee 1995).  Rising global temperatures and altered rainfall patterns could change 

amphibian distributions, reduce water levels, and increase water temperature, possibly 

leading to local extinctions of amphibian populations over large geographic scales 

(Kiesecker et al. 2004).  Global warming also could change the distribution of pathogens, 

facilitating infection of naïve populations (Kiesecker et al. 2004).  The increased 

permeability of the ozone layer and subsequent increased exposure to UV-B radiation has 

been implicated as a cause of amphibian declines (Collins and Storfer 2003, Kiesecker et 

al. 2004).  Increased UV-B radiation likely interacts with other factors such as altered 

rainfall patterns that lower water levels and reduce shoreline vegetation.  Developing 

amphibian embryos depend on water and intact vegetation to intercept and reduce UV-B 

intensity.  Increased penetration of UV-B radiation in the water can increase embryo 

mortality, cause delayed development and morphological abnormalities, or increase the 

susceptibility of amphibian embryos to infection by pathogenic molds, such as 

Saprolegnia ferax (Blaustein and Belden 2003, Kiesecker et al. 2004).  

A variety of pathogens have been associated with local amphibian die-offs.  The 

opportunistic bacterium, Aeromonas hydrophila, is frequently associated with red-leg 

disease (Rollins-Smith 2001).  This bacterium lives symbiotically with amphibians (Hird 
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et al. 1981), but becomes pathogenic when individuals are stressed and 

immunocompetence declines (Carey 1993).  The bacterium causes systemic 

hemorrhaging and can result in mortality of the amphibian host (Cunningham et al. 

1996).  Similar gross signs of disease are caused by iridoviruses, which are another 

pathogen associated with amphibian mortality.  Iridoviruses can infect an amphibian at 

any stage of development, compromise the immune system, and facilitate infection by 

other organisms or be pathogenic themselves (Carey et al. 1999).  Chytridiomycosis is a 

fungal disease that has caused widespread amphibian declines (Rachowicz et al. 2005, 

Lips et al. 2006).  Chytrid epizootics usually occur at higher elevations, and the pathogen 

(Batrachochytrium dendrobatidis) is thought to be transmitted among amphibians in 

aquatic environments (Daszak et al. 1999, Davidson et al. 2003).  Infection by parasitic 

trematodes (genus Ribeiroia) has been linked to many of the malformations observed in 

amphibians.  The eggs of adult Ribeiroia worms are located in the esophagus of the 

primary host, usually waterbirds, and defecated into aquatic environments, where they 

hatch into mobile miracidium.  Miracidium infect Planorbidae snails, where asexual 

replication occurs.  Subsequently, cercariae burrow out of the snail host and infect 

amphibian larvae (second intermediate host), where they may encyst near developing 

limb buds.  If the cysts are located at a limb bud, they can mechanically disrupt normal 

growth and cause a malformation (Kiesecker et al. 2004, Johnson et al. 2004).  These 

malformations are thought to increase predation susceptibility of the amphibian to the 

primary host, thereby facilitating completion of the trematode life cycle (Sessions and 

Ruth 1990, Johnson et al. 2004).  It is hypothesized that humans may increase pathogen 

prevalence in amphibian populations by degrading their habitat, physiologically stressing 
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resident individuals, or by facilitating transmission among spatially disjunct populations 

(Carey et al. 1999). 

 Introduction of exotic species also can influence amphibian populations.  Exotics 

may be predators of amphibians or introduce pathogens.  Exotic predators include fish, 

birds, mammals or other amphibians.  Some exotic amphibians, such as the cane toad 

(Bufo marinus), can competitively exclude indigenous amphibians when niches overlap 

(Collins and Storfer 2003).  Humans who consume amphibians or collect them for the pet 

trade contribute to amphibian declines in some areas (Collins and Storfer 2003).  In one 

county in Iowa, it was estimated that northern leopard frog (Rana pipiens) populations 

declined from 20 million to 50,000 between 1920 and 1992, with one third of the losses 

attributed to harvesting (Lannoo et al. 1994).  Non-native species released into the 

environment after being purchased through the pet trade or for bait, could harbor 

pathogens such as ranaviruses or Batrachochytrium dendrobatidis that can be transmitted 

to native populations of amphibians (Mazzoni et al. 2003). 

Finally, the most widespread and influential of all potential human impacts on 

amphibian populations is direct loss and alteration of aquatic and terrestrial habitat (GAA 

2004).  Amphibian habitat is destroyed for a variety of human land uses including 

agriculture, silviculture and urbanization (Collins and Storfer 2003).   In many places, 

habitat loss accounts for most of the decline in amphibian populations (Hecnar and 

M’Closkey 1998).  Even if aquatic environments remain unaltered, changes in land use 

between amphibian habitat patches can cause population isolation and fragmentation 

(Marsh and Trenham 2001).  Anthropogenic land use also can increase the complexity of 

the landscape between habitat patches and may influence the probability of successful 
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dispersal (Gray et al. 2004b), which can affect the probability of local extinction (Fahrig 

and Merriam 1985).  Urbanization has been associated with increased exposure to 

contaminants, eutrophication, changes in geomorphology, and alterations in the 

hydrology of the landscape (Ehrenfeld 2000, McKinney 2002).  Similarly, agricultural 

cultivation near amphibian aquatic habitats can decrease water quality from chemical 

run-off, reduce wetland hydroperiods from sedimentation, and influence the terrestrial 

vegetation composition and structure (Knutson et al. 1999, Gray et al. 2004a).  Although 

agriculture can have negative effects on amphibians, low intensity agriculture does not 

seem to affect populations as dramatically as urban development (Gibbs et al. 2005). 

Allowing cattle to graze in wetlands is an agricultural land use that may influence 

the quality of amphibian habitat (Trimble and Mendel 1995, Hadden and Westbrooke 

1996, Belsky et al. 1999, Jansen and Robertson 2001, Line 2003, Knutson et al. 2004).  

Cattle can increase erosion by trampling the banks and consuming stabilizing shoreline 

vegetation (Trimble 1994, Trimble and Mendel 1995).   Increased nutrient loading from 

cattle feces further degrades water quality by increasing eutrophication.  It is 

hypothesized that eutrophic conditions increase the abundance of Planorbidae snails by 

increasing periphyton biomass, which is a food resource for these snails.  As mentioned, 

Planorbidae snails are the first intermediate host for Ribeiroia trematodes, thus an 

increase in snail abundances from eutrophication may increase malformations in 

amphibians (Johnson et al. 2002, Johnson and Chase 2004).  Additionally, cattle 

defecation and urination in wetlands may provide a source of introduced pathogens in 

amphibian habitat (Lannoo et al. 2003, Line 2003).  
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Cattle also may affect amphibian communities by reducing shoreline vegetation 

(Scrimgeour and Kendall 2002).  Cattle grazing reduces vegetation biomass, structure, 

surface area, and species richness (Trimble and Mendel 1995).  Shoreline vegetation is 

important in wetlands for many amphibians, because it is used for breeding, escape cover, 

and sites for foraging and oviposition (Jansen and Healey 2002).  Cattle also may directly 

affect amphibian recruitment by trampling egg masses at the bottom of ponds or those 

that are attached to wetland vegetation (Scrimgeour and Kendall 2002).  Additionally, 

increased turbidity caused by cattle may cause suspended solids to settle on egg masses 

and reduce oxygen diffusion (Belsky et al. 1999).  Finally, trampling by cattle may 

increase soil compaction (Trimble and Mendel 1995), which may reduce the burrowing 

ability of some anurans. 

In the Cumberland Plateau Region of Tennessee, large ungulates are not new to 

the landscape.  Historically, buffalo, elk and deer were present in this region (Ramsey 

1926), and most likely used wetlands containing amphibians (Redmond and Scott 1996).  

The impacts of these historical ungulates on Tennessee amphibians are unknown.  There 

are some cases where amphibians have been documented using landscape features 

modified by large ungulates (e.g., bison wallows, Gerlanc and Kaufman 2005).  

However, in areas where livestock grazing occurs in Tennessee, densities are likely much 

higher than naturally roaming ungulates.  It is hypothesized that human land-use effects, 

such as cattle grazing on amphibians, will be more severe in small isolated wetlands 

(Marsh and Trenham 2001, Gray et al. 2004b). 

Few field experiments have been performed that measured the possible influences 

of cattle on amphibians.  The studies that exist primarily focused on the influences of 
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cattle on wetland vegetation and amphibian species richness, and are correlative in nature 

(Healey et al. 1997, Bull and Hayes 2000, Bull et al. 2001, Jansen and Healey 2002, 

Knutson et al. 2004).  Therefore, I performed the following replicated study to quantify 

the possible impacts of cattle on postmetamorphic amphibians, and to determine how 

cattle land use may have interacted with landscape structure.  I used eight replicate 

wetlands to perform this research: four had direct cattle access, while the remaining four 

were fenced off from cattle.  My specific research objectives were to examine the 

influences of cattle on: (1) species-specific postmetamorphic amphibian abundance, (2) 

amphibian species richness and diversity, (3) amphibian egg mass abundance, (4) 

shoreline vegetation structure and composition, (5) soil compaction, (6) pathogen 

(bacteria, viruses, and parasites) and malformation prevalence and type in 

postmetamorphic amphibians, and (7) to determine the influence of agricultural 

landscape structure and composition on amphibian community structure.  I used a 

combination of pitfall trap sampling, visual transect surveys, vegetation plot 

measurements, pathological examinations, and the geographic information system (GIS) 

to study these objectives.  Objectives 1 – 6 are presented in Chapter II and Objective 7 is 

presented in Chapter III.  Chapter IV contains a summary of my findings and thoughts on 

amphibian conservation.  This study represents the first replicated attempt to quantify the 

impacts of cattle on postmetamorphic amphibian populations in the United States.   
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CHAPTER II 

IMPACTS OF CATTLE ACCESS IN WETLANDS ON POSTMETAMORPHIC 

AMPHIBIANS  

 
Introduction 

There is a vast amount of literature assessing the impacts of anthropogenic 

stressors on amphibians.  However, the direct and indirect effects of cattle grazing on 

postmetamorphic amphibians has not been explored extensively (Bull et al. 2001), 

particularly in the southeastern United States.  Knutson et al. (2004) assessed 40 

agricultural wetlands in Minnesota for their value as amphibian breeding sites.  Of 

wetlands that had direct access by cattle, amphibian species richness and larval and egg 

mass abundance of some species was lower than in wetlands without direct cattle access.  

However, Bull and Hayes (2000) found no differences in abundance of Columbia spotted 

frog (Rana luteiventris) eggs between grazed and ungrazed ponds in Oregon.  Bull et al. 

(2001) examined the abundance of Pacific treefrog (Pseudacris regilla) and long-toed 

salamander (Ambystoma macrodactylum) larvae in fenced and unfenced wetlands, and 

detected no difference in relative abundance between cattle land-use types.  Pyke and 

Marty (2005) reported that cattle grazing in natural vernal pools in California may benefit 

amphibian communities by maintaining suitable hydrologic conditions needed for 

salamander reproduction.  Finally, in Australian billabongs, Healey et al. (1997) and 

Jansen and Healey (2002) correlated amphibian abundance with wetland characteristics, 

and suggested that cattle may indirectly negatively influence amphibian abundance by 

altering wetland vegetation.  The regional- and species-specific results of these studies 
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illustrate the need for additional studies examining the possible impacts of cattle on 

amphibian populations.  

 Cattle may influence amphibian habitat by altering aquatic and terrestrial 

vegetation.  Removal of vegetation due to livestock grazing or trampling reduces plant 

biomass, percent canopy cover, stem density and species richness (Trimble and Mendel 

1995, Jansen and Healey 2002, Scrimgeour and Kendall 2002, Ausden 2005).  Altering 

shoreline vegetation can destroy important microhabitat for amphibians (Watson et al. 

2003).  Postmetamorphic amphibians use emergent vegetation as foraging, breeding, and 

oviposition sites, shelter, and resting platforms (Hadden and Westbrooke 1996, Healey et 

al. 1997, Jansen and Healey 2002, Watson et al. 2003).   

Survival of larval amphibians is related to water quality (Sparling et al. 1995, 

Jofre and Karasov 1999), and cattle are known to decrease water quality by increasing 

erosion as a result of removing shoreline vegetation (Trimble 1994).  Further, livestock 

trampling compacts the soil in the upland, increasing runoff rate into adjacent bodies of 

water (Trimble and Mendel 1995).  Accelerated runoff can increase levels of fertilizer, 

pesticide, and herbicide contaminants in wetlands if agricultural crops exist nearby 

(Knutson et al. 1999).  Given that cattle are attracted to water to drink and cool 

themselves, they can spend a substantial amount of time in wetland areas when they are 

given access (Belsky et al. 1999).  Nutrients and bacteria are introduced into wetlands 

from cattle feces deposited directly into the water or nearby and incorporated into runoff 

during rainfall (Line 2003).  Line (2003) found that continual access of cattle to a stream 

significantly increased the amount of bacteria in the water.  He hypothesized that the 

cause was likely due to introduced cattle fecal matter.  Further, farming techniques, such 
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as feeding additives, may increase the number of artificial substances in cattle feces and 

urine, resulting in more than natural byproducts introduced into water systems (Lannoo et 

al. 2003).   

 Cattle also have the potential to increase parasitic pathogens in amphibian habitat 

(Johnson and Chase 2004).  Wetlands heavily impacted by cattle have been shown to 

support dense populations of Planorbidae snails, which are the first intermediate hosts of 

Ribeiroia trematodes (Johnson et al. 2002).  Increased nutrient loads from cattle feces and 

agricultural chemicals in runoff can induce eutrophic conditions in wetlands (Johnson et 

al. 2002).  This process tends to shift the community composition of aquatic snails toward 

larger species, such as those in the family Planorbidae (Johnson and Chase 2004).  

Species in the genera Planorbella, Biomphalaria and Helisoma of the family Planorbidae  

have been found to be hosts of Ribeiroia.   Ribeiroia trematodes from these snails can 

form cysts that may result in malformations in developing amphibians (Johnson et al. 

1999, Kaiser 1999, Johnson et al. 2002, Kiesecker 2002, Ankley 2004, Johnson et al. 

2004).   

Susceptibility to trematode infection is increased in the presence of stressors that 

reduce the immunocompetence of larval amphibians (Kiesecker 2002).  Kiesecker (2002) 

found that wood frog (Rana sylvatica) larvae stressed by exposure to pesticides had 

higher parasite loads than those not exposed to pesticides.  Habitat alterations caused by 

cattle may impose similar stress on amphibians, making them less resistant to infections 

by trematodes or other pathogens.  Aeromonas hydrophila is a bacterium often associated 

with red-leg disease in amphibians (Rollins-Smith 2001). When Aeromonas bacteria 

occur in high abundance in amphibians, it causes reddening of the skin, typically in the 
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pelvic region, due to petechial hemorrhaging (Cunningham et al. 1996).  This bacterium 

is opportunistic and is found on the skin and in the digestive tract of healthy frogs (Hird 

et al.  1981).  Most mass mortality events prior to 1990 were attributed to red-leg disease 

however, recent evidence suggests A. hydrophila functions as a secondary pathogen, 

capitalizing on weakened immune systems often due to iridovirus infection (Cunningham 

et al. 1996).  

Iridoviridae is a family of viruses that affects a wide variety of vertebrates.  Those 

that affect amphibians and other cold-blooded vertebrates are members of the genus 

Ranavirus (Williams 1996).  The most well-characterized member of this genus is Frog 

virus 3 (FV3; Docherty et al.  2003).  Ranaviruses are highly virulent and cause systemic 

infections in amphibians (Daszak et al. 1999).  The virus will invade the kidney, digestive 

tract and liver of amphibians, and can cause hemorrhaging in skeletal tissue 

(Cunningham et al. 1996, Daszak et al. 1999).  Of the 44 amphibian mortality events 

(1996 – 2001) studied by Green et al. (2002), 48% were caused by ranaviruses.  

Ranavirus outbreaks have occurred globally but typically in smaller geographical areas, 

such as single ponds that have been altered (Carey et al. 1999, Daszak et al. 1999).  More 

information is needed on Ranavirus transmission, and how anthropogenic and natural 

stressors may influence its prevalence in amphibian populations (Carey et al. 1999). 

In agricultural landscapes, wildlife may act as reservoirs and mobile vectors of 

pathogens that can infect livestock using the same wetlands.  Bacteria such as Listeria 

monocytogenes, Salmonella spp., Escherichia coli, Leptospirosis spp. and 

Mycobacterium paratuberculosis as well as the pathogenic protozoan Cryptosporidium 

spp. can be shed in cattle excrement (Theon and Johnson 1970, Morse and Duncan 1974, 
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Shotts 1981, Gray et al. 2004, Olson et al. 2004, Sargeant et al. 2004).  Cattle using 

wetlands defecate and urinate in the water (Johnson et al. 2002), potentially leading to 

contamination of the entire water body (Morse and Duncan 1974).  Few studies have 

examined the influence of these pathogens on amphibians, and none have found any 

negative effects yet (Botzler at al. 1973, Murray 1991).  Nonetheless, infection of human 

and bovine pathogens in amphibians remains an area of research interest, as amphibians 

may function as carriers or spill-over reservoirs of these pathogens and shed them in the 

environment (Botzler at al. 1973, Everard et al. 1990, Graczyk et al. 1996, Murray 1991, 

Scherer and Miller 2001, Gray et al. 2007b).  Thus, as amphibians move among wetlands, 

they could contaminate water sources, possibly leading to infection of naïve amphibian 

populations or livestock that drink from contaminated water sources.  

To date, few studies have measured the influences of cattle on postmetamorphic 

amphibian populations.  The studies that exist have focused on how cattle may impact 

wetland vegetation and resident amphibian populations, but they were correlative in 

nature (Healey et al. 1997, Bull and Hayes 2000, Bull et al. 2001, Jansen and Healey 

2002, Pyke and Marty 2005).  In addition, no cattle land-use studies have been performed 

on amphibian communities in the southeastern United States.  The objective of my study 

was to determine the direct and indirect influences of cattle on postmetamorphic 

amphibian communities and their habitat.  Therefore, I quantified species-specific 

abundance, species richness and diversity, egg mass abundance, emergent wetland 

vegetation structure and composition, soil compaction, pathogen (bacteria, viruses, and 

parasites) prevalence, and malformation prevalence and type in postmetamorphic 

amphibians at wetlands with and without direct cattle access.  I hypothesized that cattle 
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would negatively impact all of these response variables.  Eight replicate wetlands were 

used, four with direct cattle access, while the remaining four were fenced from cattle.  As 

anthropogenic disturbance continues to contribute to the decline of amphibian 

populations, such studies are imperative for understanding the specific impacts of land-

use stressors. 

 

Methods 

Study Area 

My study was conducted at the University of Tennessee Plateau Research and 

Education Center (PREC) on the Cumberland Plateau in Crossville, Tennessee (UTM 

zone 16 [NAD 27], 668310 E, 3987122 N).  Sampling occurred from 28 March − 26 

August 2005 and 27 March – 25 August 2006.  The PREC functions as an outdoor 

laboratory for crop, orchard, and cattle studies, and has approximately 250 head of 

Angus, Gelbvieh or Balancer cows, calves and bulls in pastures interspersed throughout 

the property.  The primary source of drinking water for these cattle is constructed 

wetlands.   

Eight PREC wetlands served as experimental units for my study, four had been 

exposed to grazing (average stocking rate 14 – 46 individuals) for >10 years.  The 

remaining four wetlands were surrounded by fence, preventing direct access by cattle for 

>10 years.  Cattle density around each cattle-access wetland ranged from 39 to 321 cattle 

per ha of wetland during my study (Table 1, All Tables and Figures appear in Appendix 

I).  Cattle-access treatments remained in place for the duration of the study.   
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Wetlands ranged in size from 0.143 − 1.037 ha (Figure 1).  Cattle-access and non-

access wetlands existed in separate watersheds (hence were not hydrologically linked) 

except for wetlands one and five.  Water flowed from wetlands one to five but they were 

separated by 346 m, thus I assumed changes in water quality in wetland one had minimal 

impacts on wetland five.  Fish were present in all of the wetlands, including four species 

known to predate on amphibian eggs or larvae: blue gill (Lepomis macrochirus), green 

sunfish (L. cyanellus), largemouth bass (Micropterus salmoides), and western mosquito 

fish (Gambusia affinis, Schmutzer 2007).  Wetlands had emergent non-persistent and 

persistent herbaceous shoreline vegetation and permanently flooded unconsolidated 

bottoms (Cowardin et al. 1979).  Species composition of herbaceous plants was 

predominately cattail (Typha latifolia), rushes (Juncaceae), and sedges (Cyperaceae).  

All wetlands were in relatively close proximity, with inter-wetland distance ranging from 

50 − 1300 m.  Land use between wetlands was mostly cattle pasture, mowed tall fescue 

(Lolium arundinaceum), and agricultural crop fields.  Gravel and paved roads also were 

present throughout the PREC.  Distance from roads to my study wetlands varied from 5 − 

150 m.  A more thorough description of PREC landscape features and their possible 

influence on resident amphibians is provided in Chapter III. 

 

Amphibian Species Richness, Relative Abundance, and Body Size 

 Terrestrial capture.—Species richness and abundance of postmetamorphic 

amphibians was measured using mark and recapture techniques in pitfall traps and 

breeding call surveys.  In early spring (21 − 25 March 2005), all study wetlands were 
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partially enclosed (50% of the circumference) with a continuous drift fence that was 60 

cm in height (Gray et al. 2004a, Figure 2).  The drift fence was placed parallel to and 

approximately 10 m upslope from the shoreline of the wetland.   Pitfall traps (19 L 

buckets) were placed every 10 m on alternate sides of the fence for half the distance of 

the fence (i.e., 25% of the wetland circumference).  Pitfalls were placed every 5 m for the 

remaining length of the fence.  The reason for the difference in spacing was to test for 

capture-rate differences between bucket-spacing scenarios, which was an ancillary 

objective of my study not discussed herein.  Pitfalls were placed adjacent to the fence and 

flush with the ground (Dodd and Scott 1994).  Vegetation underneath the fence was 

removed and the bottom of the fence was covered with soil to reduce trespass of 

amphibians (Gray et al. 2004b).  An electrical fence surrounded the drift fence and pitfall 

traps at wetlands with cattle access to prevent cattle from destroying the fence or injuring 

themselves by stepping in pitfalls.  Approximately 3 cm of water and a small sponge 

were placed in each bucket to prevent desiccation of captured amphibians and drowning 

or hypothermia of incidentally captured small mammals, respectively (Dodd and Scott 

1994).  I also took additional precautions to reduce small mammal mortality by attaching 

a piece of string to nearby vegetation and placing the other end in the pitfall to facilitate 

escape for trapped rodents (Karraker 2001).   

Pitfalls were opened for 24 hrs prior to checking for captures.  The order in which 

pitfalls were opened and processed was the same within a sampling event, but this order 

sequentially rotated among wetlands between sampling events to randomly distribute 

potential bias associated with time of day traps were opened or checked.  Traps were 

checked twice per week (Tuesday and Friday) from 28 March − 26 August 2005 and 27 
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March – 25 August 2006.  Following biological processing of captures, the pitfalls were 

closed. 

Biological processing.—Captured individuals were identified by species, age and 

sex if possible.  Individuals <1 year old were classified as metamorphs, and individuals 

>1 year old but not displaying secondary sexual characteristics were classified as 

juveniles.  Individuals >1 year old were identified as adult females by assessing their 

body size relative to males (i.e., larger) and inspecting for external reproductive 

characters, such as unswollen cloacae for salamanders and eggs visible through the skin 

for anurans.  Adult males were identified as being >1 year old if they possessed male 

reproductive characters, such as enlarged cloacal papillae for salamanders and vocal sacs 

for anurans (Duellman and Trueb 1986).  Nuptial excrescences also were used as a male 

character for anurans (Duellman and Trueb 1986).    

Captured juvenile and adult anurans were individually marked with an alpha-

numeric florescent tag (®Northwest Marine Technology, Inc.), and all adult anurans and 

salamanders were given a unique toe-clipping code as per Hero (1989) using scissors 

soaked in 0.01% chlorhexidine diacetate (Camper and Dixon 1988).  Time necessary to 

mark individuals, tag retention and infection rates, and visibility of marks were recorded 

for each technique and recaptured individual as part of an ancillary study not discussed 

herein.  Metamorphs were only toe-clipped because they were too small for tags.  

Clipping codes for metamorphs were assigned according to the wetland and side of the 

drift fence they were captured.  If metamorphs were captured on the upland side of the 

fence, it was assumed they were attempting to immigrate to the study wetland (Gray 

2002).  In contrast, if metamorphs were captured on the wetland side of the fence, it was 
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assumed they were attempting to emigrate.  I batched marked all metamorphs in this 

fashion, because I anticipated capturing large numbers (e.g., >100 individuals / day, Gray 

2002), which would have quickly exceeded toe-clipping code combinations.   

To quantify possible impacts of cattle grazing on postmetamorphic body size, I 

measured mass and snout-vent length (SVL) for the first five individuals caught per 

species per wetland per sampling event.  All individuals also were examined for 

malformations and other gross indicators of disease, and those with any pathological 

signs were collected for further examination (see Pathogen Prevalence section, p. 21).  

For malformed individuals, malformation type was identified using the USGS Field 

Guide to Malformations of Frogs and Toads (Meteyer 2000).  After processing grossly 

healthy individuals, they were rehydrated (i.e., placed temporarily in a bucket of water) 

and released on the opposite side of the fence from which they were caught so the 

direction of their movement was not altered (i.e., emigrating or immigrating, Dodd and 

Scott 1994).  All sampling and marking techniques followed a University of Tennessee 

Institutional Animal Care and Use Committee approved protocol (#1425).  

Breeding call surveys.— Breeding call surveys were performed once per week.  

Survey methods followed North American Amphibian Monitoring Program (NAAMP) 

protocol (Weir 2001), except that data were collected for two consecutive time periods 

(0–5:00 and 5:00–10:00 minutes) and with two observers.  Another ancillary objective of 

my study was to determine if species abundance and richness differed between breeding 

call surveys lasting five and ten minutes (Burton et al. 2007).   

Observers stood at permanent listening stations on opposite sides of each wetland 

and did not share survey results.  Surveys began >30 minutes after the U.S. Naval 
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Observatory published time for sunset (U.S. Naval Observatory 2006).  Upon arriving at 

listening stations, researchers waited for 1 minute before beginning surveys to allow 

observers to acclimate to the surroundings and for anurans to recover from possible 

disturbances.  All species heard were recorded separately for 5- and 10-minute surveys, 

and species-specific abundance indexed.  Following NAAMP protocol, an abundance 

index of 1 was given when individual calls of a species were distinguished but did not 

overlap, an index of 2 was assigned when calls overlapped but individuals could be 

distinguished, and an index of 3 was assigned when there was a full chorus (i.e., calls 

overlapped and individuals were indistinguishable, Weir 2001).  Total number of anuran 

species heard by both observers and mean abundance index averaged between observers 

per species were used as response variables.  

 

Egg Mass Abundance 

To measure relative egg mass abundance, each wetland was visually surveyed for 

egg masses once per week.  Each wetland was divided into the four cardinal quadrants 

(Figure 2).  One quadrant of each wetland was randomly selected at the beginning of the 

study for egg mass surveys.  The opposing quadrant also was surveyed for egg masses.   

Within each surveyed quadrant, one of the two cardinal azimuths forming the quadrant 

was randomly selected.  Next, a permanent transect (10 m long) was placed 1 m from the 

random cardinal azimuth so that it extended into the quadrant.  The transect was oriented 

2 m from and parallel to the shoreline (Figure 2).  All egg masses observed along the 

transect were counted and identified to one of the following taxonomic groups: American 

bullfrog (Rana catesbeiana) and green frog (R. clamitans), pickerel frog (R. palustris) 
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and southern leopard frog (R. sphenocephala), Cope’s gray treefrog (Hyla chrysoscelis), 

American toad (Bufo americanus) and Fowler’s toad (B. fowleri), and non-amphibian.  I 

combined amphibian species in these groups, because I was unable to distinguish their 

eggs in the field.  Different sets of waders were used for sampling in cattle-access 

wetlands to avoid possible pathogen transfer, which could have biased my pathogen 

results (discussed later).  

 

Emergent Shoreline Vegetation 

 Emergent shoreline vegetation was measured once per month for percent vertical 

and horizontal cover, height, and plant species richness.  Vegetation was measured in a 1-

m2 plot that was placed along a randomly selected azimuth in the two quadrants not used 

for egg mass surveys (Figure 2).  A new azimuth was randomly generated each month per 

wetland.  The plot was placed at the midpoint of the emergent vegetation zone along the 

azimuth in each quadrant.  Vegetation height and vertical structure were measured using 

a graduated profile board placed at the center of each plot.  The board was faced toward 

the upland and was held such that the bottom of the board was flush with the water 

surface if water was present.  The observer reading the board knelt 2 m upslope from the 

board and recorded visual obstruction by vegetation.  My profile board was divided into 

four height strata (0 – 0.5 m, 0.5 – 1.0 m, 1.0 – 1.5 m, 1.5 – 2.0 m), with each strata 

containing 30 alternately colored squares (5 × 5 cm).  Percent vertical structure was 

determined by counting the number of squares that were covered >50% by emergent 

vegetation in each strata, and dividing by 30 (i.e., the number of squares per section).  

Maximum and minimum height of the shoreline vegetation covering the profile board 
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was recorded and averaged for mean vegetation height per sampling location.  In the 1-

m2 plot, percent horizontal vegetation and water cover was visually estimated, and plant 

species richness was enumerated.   For each vegetation response variable, all 

measurements were averaged between sampling locations within wetlands so there was 

one value per variable per wetland per sampling event. 

 

Soil Compaction 

Soil compaction was measured once per month in 2006 with a soil compaction 

meter (Dickey-john Corporation, Auburn, Illinois, USA).  The compaction of upland soil 

(lbs/in2) was measured every 5 m along a randomly generated azimuth extending 0 – 20 

m from the water line.  A new azimuth was randomly generated each month per wetland.  

These five measurements also were averaged for mean soil compaction per wetland per 

month.  Measurements from the first month (i.e., April 2006) were not used in analyses 

because two different individuals operated the meter, which could have biased results.  

 

Waterbird Prevalence 

 Waterbirds, including great blue herons (Ardea herodias), green herons 

(Butorides virescens), wood ducks (Aix sponsa) and mallards (Anas platyrhynochos), 

have been reported as definitive hosts of the trematode, Ribeiroia ondatrae (Johnson and 

Lunde 2005).  Thus, I recorded the presence of these birds upon arriving at each wetland.  

Observations were recorded four days per week during the sampling periods. 
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Pathogen (bacteria, viruses and parasitic) Prevalence 

Specimen collection.—Five recently metamorphosed green frogs were collected 

from pitfalls at each wetland (n = 40 individuals) on 15 June 2005 for pathogen analyses.  

I used green frog metamorphs because they were most abundant at my study wetlands.  

Metamorphs were transported to the University of Tennessee and housed in terrariums 

separately by wetland until processed less than 2 days after collection.  In addition, I 

opportunistically collected individuals of various species and age classes with clinical 

signs suggestive of disease (e.g., abraded skin, reddening of the skin, lethargy, 

malformations).   

Pathological sampling.—Collected amphibians were euthanized by immersion in 

a benzocaine hydrochloride water bath (250 mg/L), and a complete necropsy was 

performed.  Necropsy protocol followed sterile procedures to prevent specimen 

contamination.  Necropsies began by placing euthanized individuals in dorsal 

recumbency on a sterilized surgical cutting board.  A ventral midline incision was made 

exposing the coelomic cavity.  A swab of the peritoneum was collected, refrigerated at 

4ºC, and later tested for Aeromonas hydrophila, Listeria monocytogenes, Salmonella 

spp., and Escherichia coli (see Appendix II for all pathological testing procedures).   

Sections of brain, heart, skeletal muscle, skin, lung, spleen, liver, kidney, 

reproductive tract, adrenal glands, bone marrow, stomach, intestines, lymphoid tissues, 

sinonasal cavity and eye were collected.  A subset of these tissues was fixed in 10% 

buffered formalin for histological examination.   Additionally, a partial set of tissues 

(lung, kidney, spleen, intestines, stomach and liver) was taken for culturing aerobic and 

anaerobic bacteria.  Specific tests were performed for Leptospira spp. using liver and 
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kidney tissues by placing them in a media containing bovine serum albumen (BSA) and 

refrigerating at 4ºC for later testing (Appendix II).  A section of the intestine also was 

collected and frozen at –20ºC for later testing of Mycobacterium paratuberculosis.  A 

partial set of tissues (lung, kidney, spleen, brain, skin, skeletal muscle, heart, intestines, 

stomach and liver) was frozen at –20ºC and tested for viruses (Appendix II).  Feces were 

collected and refrigerated at 4ºC and tested for parasites and protozoans (including 

Cryptosporidium spp.) using standard fecal analyses, PCR (polymerase chain reaction, 

for Cryptosporidium spp.), and electron microscopy for evidence of viral shedding 

(Appendix II).  All tissues and swabs were transported within 24 hrs of preparation to the 

University of Georgia, Veterinary Diagnostic and Investigational Laboratory, Tifton, 

Georgia (UGA VDIL) for pathogen testing (Appendix II).   

 

Malformation and Trematode Prevalence 

Each individual captured in pitfalls was visually inspected for malformations.  If 

an individual was malformed, it was opportunistically collected and euthanized by 

immersion in a benzocaine hydrochloride water bath (250 mg/L).  The specimen was 

fixed in 10% buffered formalin for 24 hrs then transferred to 70% ethanol (Hanken and 

Wasserug 1981).  Specimens were stored in ethanol until they were cleared to determine 

if malformations were due to trematodes (see Appendix II for clearing procedures).    

 

Statistical Analyses 

Amphibian response variables included species-specific relative abundance from 

pitfalls; body mass and SVL by species, age and sex class; mean breeding call abundance 
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index by species; egg mass abundance for the taxonomic groups discussed previously; 

species richness and diversity; and pathogen and malformation prevalence.  I used total 

daily capture of new individuals (i.e., recaptures not included) per wetland as an index of 

relative abundance.  Daily capture was standardized by dividing by the number of pitfall 

traps at each wetland, because they differed in size (Table 1).  Given that wetlands were 

experimental units, daily captures were subsamples.  I was interested in quantifying 

monthly trends in species-specific abundance; therefore, I averaged captures across days 

within months for each wetland, which resulted in an 8 × 6 response matrix 

corresponding to eight wetlands and six months for each species.  Breeding call indices 

were averaged between observers and across weeks per species per wetland per month to 

estimate breeding male abundance.  Species richness was estimated using pitfall trap 

captures and breeding call surveys.  Total number of species caught or heard at each 

wetland during a month was used as the response variable.  Species diversity was 

calculated using Shannon-Weiner diversity index from pitfall captures only (Raven and 

Johnson 1999).  Total abundance of egg masses per wetland per month for each 

taxonomic group and for all species combined were response variables.  Pathogen and 

malformation prevalence was the number of individuals infected or malformed divided 

by the total number of individuals collected, respectively.  Environmental response 

variables included plant height, plant species richness, percent horizontal and vertical 

cover of vegetation, soil compaction, and mean daily abundance of waterbirds.   

For all response variables, except pathogen and malformation prevalence, and 

body size, wetlands (n = 4 per land-use type) were experimental units and sampling 

events within months were subsamples for each year.  Each of these response variables 
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also was averaged between years per wetland for a combined estimate over the 2-year 

duration of my study.  There were two main effects of interest (cattle land-use type and 

month) for all response variables, except body size and waterbird abundance.  For these 

latter variables, I was only interested in testing for a land-use effect.  I used an analyses-

of-covariance (ANCOVA), with capture date as the covariate, to test for differences in 

SVL and mass between cattle land uses.  Capture date was used as the covariate to 

partition variation associated with growth.   I used a 1-factor analysis-of-variance 

(ANOVA) to test for differences in waterbird abundance between cattle land-use types. 

For all other response variables, I used a used a 2-factor repeated-measures 

ANOVA with Hunyh-Feldt correction to test for differences between cattle land uses and 

among months, with the exception of soil compaction (Zar 1999).  For this variable, land-

use differences were tested using an ANCOVA and monthly differences were tested 

using a 1-factor (month only) repeated-measures ANOVA.  For the ANCOVA, sampling 

distance from the wetland was used as the covariate.  If land-use differences were 

detected for soil compaction, linear regression models were constructed to determine 

direction and strength of the relationship between distance from wetland and soil 

compaction.  Normality of all response variables was tested using a Shapiro-Wilk test, 

and a non-parametric Wilcoxon test used to test for differences between land-use types if 

violated.  If differences were detected in the repeated month effect, Tukey’s Honestly 

Significant Difference (HSD) test was performed to determine pairwise differences.  For 

the 2-factor repeated-measures ANOVAs, analyses were separated by month for land-use 

tests and by cattle land use for month tests when an interaction between land-use and 

month effects occurred.   
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I treated individuals collected for pathogen testing and malformation inspection as 

experimental units of the cattle land-use main effect.  Differences were tested in pathogen 

prevalence and prevalence of each malformation type between cattle land uses using 2-

sample Z-tests for proportions.  I used a one-sample Z-test for proportions to test for 

deviance in overall malformation rates from 0.5 between cattle land uses (Zar 1999).   

I also was interested in identifying possible environmental co-factors of cattle 

land use that explained significant variation in amphibian abundance.  Thus, I built 

multiple linear regression models using stepwise selection (entry and stay α = 0.10, 

Meyers 1990), with species-specific relative abundance as the response variable.  Possible 

explanatory variables for these models included mean number of cattle per ha of wetland 

(Table 1), four vegetation variables (plant height, percent horizontal cover, percent vertical 

structure, and plant species richness), and soil compaction.  In addition, I included eight 

water quality variables (NO2, NO3, NH3, PO4, pH, temperature, turbidity, and specific 

conductivity), and relative daily abundance of larvae per species from a concurrent study 

(Schmutzer 2007).  For details on water quality and larval sampling methods, please see 

Schmutzer (2007). 

   For the final models, I presented un-standardized and standardized parameters 

(Meyers 1990).  Un-standardized parameters can be used to predict species-specific 

relative abundance given values of explanatory variables in the model.  I used 

standardized estimates to interpret the magnitude and direction of the relationship 

between relative abundance and an explanatory variable.  I also presented variance 

inflation factors (VIF); values of VIF > 10 are suggestive of multicollinearity (Freund 

and Littell 2000).  Finally, I provide overall and partial coefficients of determination for a 
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measure of the variation explained in relative abundance by the final model and each 

significant explanatory variable, respectively (Meyers 1990).  All statistical analyses 

were performed using the SAS® system (Littell et al. 1991, Stokes et al. 2003).  Due to 

the small sample size for the majority of my statistical analyses (n = 8 experimental units 

/ wetlands), I used α  = 0.10 as the level of statistical significance.  I did so to increase the 

likelihood that meaningful biological trends would be detected.  Although I recognize 

there was a 10% chance of committing a Type I error, I consider this error rate to be 

reasonable for interpreting biological trends (Tacha et al. 1982).  Other wildlife studies 

have supported the use of α  = 0.10 as a level of statistical significance when samples 

sizes are small (Tacha et al. 1982, Peterman 1990, Thompson et al. 1992, Stevens et al. 

2003, Kaminski et al. 2006).  

 

Results 

Cattle Land-use Effect 

Mean daily abundance of green frogs at non-access wetlands was 8.7X greater 

than at cattle-access wetlands in 2006 (Wilcoxon Z = 1.9, P = 0.06, Table 2); however, 

land-use and month effects interacted (F5,30 = 3.86, P = 0.07).  By monthly tests revealed 

that green frog abundance at non-access wetlands was 16X and 21X greater than at 

access wetlands in May and July 2006, respectively (Wilcoxon Z ≥ 1.9, P ≤ 0.05).  

Significant differences did not exist in 2005 (F5,30 = 2.15, P = 0.19) or in the combined 

analysis (Wilcoxon Z = 1.6, P = 0.11), but the same trend existed for green frogs.  Green 

frogs were 2.4X and 4.1X more abundant at non-access wetlands than at access wetlands 

in 2005 and in combined years (Table 2).   
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Age-sex class tests revealed that green frog metamorphs were the demographic 

group driving the aforementioned trends.  Abundance of green frog metamorphs at non-

access wetlands was 10X greater than at access wetlands in 2006 (Wilcoxon Z = 1.9, P = 

0.06, Table 3).  Additionally, green frog metamorphs were 3X and 5X more abundant at 

non-access wetlands in 2005 and in combined years, although statistical differences were 

not detected (F1,6 = 2.27, P = 0.18 [2005]; Wilcoxon Z = 1.6, P = 0.11 [combined]).  In 

2006, green frog juveniles also were 3.4X more abundant at non-access wetlands, despite 

that statistical differences were not detected (Wilcoxon Z = 1.2, P = 0.22, Table 3). 

Mean relative abundance of American toads at cattle-access wetlands was 70X 

greater than at non-access wetlands over the 2 years (Wilcoxon Z ≥ 2.2, P ≤ 0.03, Table 

2).  In 2005 and 2006, mean relative abundance at cattle-access wetlands was 68X and 

76X greater than at non-access wetlands (Wilcoxon Z ≥ 2.2, P ≤ 0.03).  Land-use and 

month effects interacted in 2006 (F5,30 = 5.01, P = 0.03).  By monthly tests revealed that 

American toads were more abundant at cattle-access wetlands in April 2006 (Wilcoxon Z 

= 2.3, P = 0.02); no individuals were captured at non-access wetlands that month.  This 

trend was driven by all age-sex classes, but only mean abundance of adult female and 

male American toads at access wetlands was significantly greater than at non-access 

wetlands in combined years (Wilcoxon Z ≥ 2.2, P ≤ 0.03).  In 2005, mean abundance of 

adult females was significantly greater, while in 2006, mean abundance of adult males 

was significantly greater at cattle-access wetlands (Wilcoxon Z ≥ 2.3, P ≤ 0.02, Table 3).   

For all other species, no differences were detected in mean daily abundance 

between cattle-access and non-access wetlands (F5,30 ≤ 3.35, P ≥ 0.12, Table 2).  

However, there was a trend that Fowler’s toads were more abundant at cattle-access 
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wetlands.  Relative abundance of most other species tended to be greater at non-access 

wetlands (Table 2).    

 Mean breeding call index of American toad, Fowler’s toad and Cope’s gray 

treefrog was 4 – 25X greater at access wetlands than at non-access wetlands in 2006 and 

across both years (Wilcoxon Z ≥ 1.8, P ≤ 0.07, Table 4).  Land-use and month effects 

interacted for these three species when years were combined (F5,30 ≥ 3.2, P ≤ 0.05).  

Monthly tests for combined years indicated that the call index for American toad was 4X 

greater at access wetlands in April, Fowler’s toad was 5X greater at access wetlands in 

May and June, and Cope’s gray treefrog was 10X and 11X greater at access wetlands in 

May and June, respectively (Wilcoxon Z ≥ 1.9, P ≤ 0.06).  In 2006, land-use and month 

effects interacted for Fowler’s toad and Cope’s gray treefrog (F5,30 ≥ 3.7, P ≤ 0.02).  

Monthly tests revealed that the call index for Fowler’s toad and Cope’s gray treefrog was 

4 – 9X greater at access wetlands in May and June 2006 (F1,6 ≥ 5.9, P ≤ 0.05).  In 2005, 

land-use and month effects also interacted for Cope’s gray treefrog (F5,30 ≥ 5.4, P ≤ 0.02), 

and monthly tests indicated that its call index was 4X greater at access wetlands in June 

(Wilcoxon Z = 1.7, P = 0.08).  In contrast, the call index was 2X greater at non-access 

wetlands for spring peepers in 2005 and for pickerel frogs in 2006 (F1,6 ≥ 5.06, P ≤ 0.07); 

however, land-use and month effects interacted for spring peepers in combined years and 

in 2005, and for pickerel frogs in combined years and in 2006 (F5,30 ≥ 4.7, P ≤ 0.01).  

Monthly tests revealed that the call index of spring peeper was 3X and 12X greater in 

March at non-access wetlands in combined years and in 2005, respectively (F1,6 ≥ 7.6, P 

≤ 0.03).  The call index of pickerel frog at non-access wetlands was 3X and 5X greater 

than at access wetlands in combined years and in 2006, respectively (F5,30 ≥ 7.7, P ≤ 
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0.03).  No other differences were detected in call indices between land uses (Wilcoxon Z 

≤ 1.6, P ≥ 0.11, Table 4). 

Mean relative abundance of RAPA-RASP egg masses in cattle-access wetlands 

was significantly greater than at non-access wetlands across years (Wilcoxon Z = 1.8, P = 

0.07, Table 5); no egg masses were observed at non-access wetlands.  However, land-use 

and month effects interacted (F5,30 = 4.04, P = 0.08).  By monthly tests revealed that 

mean abundance of RAPA-RASP eggs was greater at cattle-access wetlands only in April 

(Wilcoxon Z = 1.8, P = 0.07).  No other differences were detected between land uses in 

relative abundance of egg masses (Wilcoxon Z ≤ 1.6, P ≥ 0.11, Table 5).    

      Differences were not detected in species diversity between land-use types in 

combined years or for each year separately (F1,6 ≥ 2.07, P ≤ 0.20, Table 6).  Similarly, 

mean species richness in pitfalls and breeding call surveys was not different between 

cattle land uses in 2005 (F1,6 ≤ 0.3, P ≥ 0.60, Table 6).  However, in combined years and 

in 2006, month and land-use effects interacted for mean species richness in pitfalls and 

call surveys (F5,30 ≥ 2.51, P ≤ 0.05).  When years were combined, monthly tests indicated 

that pitfall species richness was 3X greater at non-access wetlands in August (F1,6 ≥ 

11.72, P ≤ 0.01).  In 2006, pitfall species richness was 3X and 5X greater at non-access 

wetlands in July and August, respectively (F1,6 ≥ 4.57, P ≤ 0.08).  In contrast, pitfall 

species richness at access wetlands was 4X greater than at non-access wetlands in April 

2006 (F1,6 = 13.5, P = 0.01).  Monthly tests for breeding call species richness revealed 

that species richness at cattle-access wetlands was 37% and 62% greater than at non-

access wetlands in June for both years combined and in 2006, respectively (F1,6 = 8.73, P 

= 0.03, Table 6).   
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 Species composition of amphibians captured in pitfall traps was different between 

cattle land uses both years.  Species composition at cattle-access wetlands was more 

evenly distributed than at non-access wetlands (Figure 3).  In 2005, cattle-access 

wetlands were dominated by American toads (37%) and green frogs (32%), whereas non-

access captures were mostly green frogs (78%).  In 2006, green frogs were dominant 

(62%) at non-access wetlands, while southern leopard frogs (33%), green frogs (18%), 

and Fowler’s toad (18%) were most common in cattle access (Figure 3).    

 Mass and SVL at non-access wetlands were 20 – 185 % greater than at access 

wetlands for metamorph and juvenile Fowler’s toad (Wilcoxon Z ≥ 1.7, P < 0.10, Tables 

7 and 8).  Snout-vent length at non-access wetlands also was 11% greater than at access 

wetlands for adult male Fowler’s toad (F1,28 = 12.48, P < 0.01).  In contrast, mass and 

SVL at cattle-access wetlands were 7 – 36% greater than at non-access wetlands for 

green frog, southern leopard frog, and pickerel frog metamorphs (Wilcoxon Z ≥ 2.31, P ≤ 

0.02).  Snout-vent length at cattle-access wetlands also was 14% greater than at non-

access wetlands for adult male American toad (F1,32 = 20.58, P <0.01).  No other 

differences were detected (Wilcoxon Z ≤ 1.5, P ≥ 0.14), although there was a trend of 

greater body size in cattle-access wetlands for ranids (Tables 7 and 8).    

Across both years, height and percent vertical structure of vegetation at non-

access wetlands were 56% and 60% greater, respectively, than at access wetlands (F1,6 ≥ 

7.11, P ≤ 0.04, Table 9).  Height, percent horizontal cover, and percent vertical structure 

of vegetation at non-access wetlands were 74%, 25%, and 84% greater, respectively, than 

at cattle-access wetlands in 2005 (F1,6 ≥ 4.79, P ≤ 0.07).  Percent vertical structure also 

was 41% greater at non-access wetlands in 2006 (Wilcoxon Z = 2.2, P = 0.03).  No 
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additional differences were detected (Wilcoxon Z ≤1.6, P ≥ 0.11), however in general, 

vegetation structure and richness were greater at non-access wetlands compared to cattle-

access wetlands.   

Soil compaction was 55% greater at access wetlands than at non-access wetlands 

(F2,37 ≥ 15.85, P ≤ 0.01, Table 9).  At non-access wetlands there was a strong positive 

relationship between soil compaction and distance from the shoreline, and 70% of the 

variation in soil compaction was explained by distance (Figure 4a).  At access wetlands 

there was a moderate positive relationship between soil compaction and distance from the 

shoreline, but only 10% of the variation in soil compaction was explained by this variable 

(Figure 4b). 

Mean daily abundance of green herons was 6X and 10X greater at non-access 

wetlands across years and in 2005, respectively (Wilcoxon Z ≥ 2.2, P ≤ 0.03, Table 10).  

In contrast, abundance of mallards was 20X greater at cattle-access wetlands across years 

(Wilcoxon Z = 2.2, P = 0.03); however, treatment and month effects interacted (F5,30 = 

7.18, P = 0.01).  Monthly tests revealed that mallard abundance was greater at access 

wetlands in March (Wilcoxon Z = 2.3, P = 0.02); there were no mallard observations at 

non-access wetlands during this month.  No other differences in waterbird abundance 

between land-use types were detected (F5,30 ≤ 3.21, P ≥ 0.12, Table 10).    

 

Month Effect 

Mean daily abundance differed among months for American bullfrog, green frog, 

spring peeper and mole salamander across years (F5,30 ≥ 2.41, P ≤ 0.08, Table 11).  Mean 

daily abundance of green frogs was 3 – 130X greater in June than in all other months for 
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combined years and each year separately (F 5,30 ≥ 6.73, P ≤ 0.02).  Spring peeper 

abundance was greatest in April when years were combined and in 2005 (F 5,30 ≥ 6.42, P 

≤ 0.03).  Tukey’s HSD test did not detect monthly differences for American bullfrog and 

mole salamander in combined years, although the overall monthly test was significant 

(F5,30 ≥ 2.41, P ≤ 0.08).  Mean daily abundance differed among months in 2006 for 

American toad and American bullfrog (F5,30 ≥ 5.01, P ≤ 0.03).  American toad abundance 

was 12 – 17X greater in April than all other months, except June (F5,30 = 5.01, P = 0.03).  

American bullfrog abundance was 2 – 31X greater in July than March – June 2006 (F5,30 

= 4.58, P = 0.02).  No other differences were detected in mean daily abundance among 

months (F5,30 ≤ 2.25, P ≥ 0.14, Table 11). 

Mean breeding call index was different among months for northern cricket frog, 

American toad, Fowler’s toad, Cope’s gray treefrog, spring peeper, American bullfrog, 

green frog, pickerel frog and southern leopard frog across years (F5,30 ≥ 4.02, P ≤ 0.03, 

Table 12).  Mean breeding call index of northern cricket frog was 40 – 68X greater in 

June than in March and April in combined years and in 2005 (F5,30 ≥ 6.39, P ≤ 0.02).  In 

2006, mean index was significantly different among months for northern cricket frog 

(F5,30 = 4.29, P = 0.02); however, Tukey’s HSD test did not detect differences.  Across 

years, mean call index for Fowler’s toads was greater in June than in March and August 

(F5,30 = 4.02, P = 0.03), while in 2006, mean index was greater in May and June than in 

March and August (F5,30 = 5.95, P < 0.01).  Mean calling index of Cope’s gray treefrog 

was 11 – 29X greater in May – July than all other months across years and in 2006 (F5,30 

≥ 17.90, P ≤ 0.01).  In 2005, calling index of Cope’s gray treefrog was 9 – 11X greater in 

June and July than in all other months (F5,30 = 8.89, P < 0.01).  Similarly, in combined 
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years and in 2006, mean calling index of American bullfrog was 2 – 182X greater in June 

and July than in all other months (F5,30 ≥ 49.63, P ≤ 0.01).  In 2005, mean calling index of 

American bullfrog was 2 – 180X greater in July than in all other months, except June 

(F5,30 = 26.39, P < 0.01).  Mean calling index of green frogs was greater in June – August 

than in all other months when years were combined (F5,30 = 78.80, P < 0.01).  In 2005, 

mean calling index of green frogs was 1 – 39X greater in July than in all other months 

except August (F5,30 = 82.84, P < 0.01), while in 2006, green frog calling index was 2 – 

14X greater in June and July than in all other months except August (F5,30 = 42.99, P < 

0.01).  In contrast, American toad mean calling index was greater in April than in all 

other months across years and in 2005 (F5,30 ≥ 11.86, P ≤ 0.01).  Similarly, mean 

breeding call index of pickerel frog was 1 – 21X greater in April than in all other months 

across years and in 2006 (F5,30 ≥ 40.63, P ≤ 0.01), while in 2005, mean breeding call 

index was 1 – 7X greater in March and April than in all other months (F5,30 = 17.89, P < 

0.01).  Spring peeper calling index was 2 – 17X greater in March and April than in all 

other months across years and in 2005 (F5,30 ≥ 35.66, P ≤ 0.01), while in 2006, mean 

index was 3 – 49X greater in April than in all other months except March (F5,30 = 18.62, 

P < 0.01).  Across years, mean calling index of southern leopard frogs was greater in 

April than in July and August (F5,30 = 5.49, P = 0.02), while in 2005, calling index was 

greater in April than in June – August (F5,30 = 4.96, P = 0.03).  No other differences were 

detected in breeding call indices among months (F5,30 ≤ 1.67, P ≥ 0.2, Table 12).   

Mean estimates of pitfall and breeding call species richness were different among 

months across years (F5,30 ≥ 10.17, P < 0.01, Table 13); however, month and land-use 

effects interacted (F5,30 ≥ 2.51, P ≤ 0.05).  Within land-use tests for combined years 
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revealed that pitfall species richness was 3 – 12X greater in June and July than in all 

other months for non-access wetlands (F5,18 = 8.89, P < 0.01); no differences were 

detected among months for access wetlands (F5,18 = 0.95, P = 0.47).  Within land-use 

tests for combined years revealed that mean breeding call species richness was 2 – 5X 

greater in May than in March, July and August in access wetlands (F5,18 = 16.31, P < 

0.01), and 1 – 2X greater in May than in all other months except April in non-access 

wetlands (F5,18 = 17.62, P < 0.01).  Mean pitfall and breeding call species richness was 

different among months each year (F5,30 ≥ 4.29, P < 0.01); however, month and land-use 

effects interacted for pitfall richness in both years and breeding call richness in 2006 

(F5,30 ≥ 2.43, P ≤ 0.06).  Within land-use tests revealed that pitfall species richness in July 

2005 was 5X greater than in March for non-access wetlands (F5,18 = 3.95, P = 0.01).  In 

2006, pitfall species richness was 8 – 14X greater in June, July and August than in all 

other months for non-access wetlands (F5,18 = 11.14, P < 0.01).  Breeding call richness in 

2006 was 69 – 175% greater in May than in all other months for non-access wetlands 

(F5,18 = 9.40, P < 0.01).  In cattle-access wetlands, breeding call richness was 3 – 5X 

greater in May and June 2006 than it was in March and August (F5,18 ≥ 11.01, P < 0.01).  

Breeding call species richness in 2005 was 2 – 3X greater in May than it was in March, 

July and August (F5,30 = 15.04, P < 0.10); no month and land-use interaction existed 

(Table 13).   

Mean species diversity also differed among months in combined years (F5,30 = 

4.60, P = 0.01, Table, 13); however, month and treatment effects interacted (F5,30 = 2.61, 

P = 0.07).  Within land-use tests indicated that mean species diversity was 15X greater in 

July than in April for non-access wetlands (F5,18 = 4.07, P = 0.01), while no differences 
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were detected among months in access wetlands (F5,18 = 0.41, P = 0.83).  Mean species 

diversity also differed among months each year (F5,30 ≥ 2.77, P ≤ 0.04).  In 2006, species 

diversity was greater in July than in March and May months (F5,30 = 5.40, P = 0.02).  In 

2005, Tukey’s HSD test did not detect differences among months despite significance of 

the overall test (F5,30 = 2.77, P = 0.04).  No additional differences were detected in 

species richness or diversity among months (F5,18 ≤ 1.87, P ≥ 0.15, Table 13).   

Mean abundance of pickerel frog and southern leopard frog egg masses was 

greater in April than all other months across years (F5,30 = 4.04, P = 0.08, Table 14).  No 

differences were detected in egg mass abundance among months for within year tests 

(F5,30 ≤ 2.41, P ≥ 0.16).  In general, egg masses of American bullfrog, green frog, and 

Cope’s gray treefrog were more abundant in June, July and August, whereas pickerel frog 

and southern leopard frog egg masses were more abundant in April and May (Table 14).   

Species composition of pitfall captures was different among months both years 

(Figures 5 and 6).  In 2005, southern leopard frogs and pickerel frogs were most common 

in March, while American toads were most common in April and May.  Fowler’s toads 

also were fairly common in May 2005.  On the other hand, green frogs were dominant 

from June – August in 2005.  American bullfrogs also were common in August 2005.  In 

2006, there were no captures in March. American toads and Fowler’s toads were 

dominant in April 2006.  American toads and green frogs were most common in May 

2006.  Green frogs were dominant from June – August 2006, southern leopard frogs were 

common in June and July 2006, and American bullfrogs were captured often in July and 

August 2006 (Figures 5 and 6).   
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Mean height, percent horizontal cover, percent vertical structure of shoreline 

vegetation and plant species richness differed among months in across years (F4,24 ≥ 5.41, 

P < 0.01, Table 15).  Mean height and percent horizontal cover were 50 – 132% greater 

in August than in April or May in combined years and in 2005 (F4,24 ≥ 6.69, P < 0.01, 

Table 15).  Across years, vertical structure was 78 – 135% greater in June and August 

than in April and May (F4,24 = 12.68, P < 0.01), although Tukey’s HSD test did not detect 

any differences among months for plant species richness.  In 2006, mean height, percent 

horizontal cover, and vertical structure were 60 – 111% greater in July and August than 

in April (F4,24 ≥ 6.83, P < 0.01).  Plant species richness was 59% greater in May than in 

April in 2006 (F4,24 = 5.37, P < 0.01).  No differences in plant species richness were 

detected in 2005 (F4,24 = 2.12, P = 0.14).  Soil compaction was 98% greater in June than 

in May (F3,21 = 7.76, P < 0.01, Table 15).   

 

Prediction Models 

Substantial variation (44 – 99%) was explained in mean relative abundance by 

final models for six amphibian species both years (Tables 16 and 17). The greatest 

variation in relative abundance of American toad was explained by cattle density (83%) 

and turbidity (90%) in 2005 and 2006, respectively.  Both variables were positively 

related with American toad abundance.  Most of the variation in Fowler’s toad abundance 

was explained by un-ionized ammonia (NH3, 77%) and vertical structure of vegetation 

(85%) in 2005 and 2006, respectively.  Ammonia was positively related and vertical 

structure was negatively related with Fowler’s toad abundance.  For spring peepers in 

2005, 64% of the variation in their abundance was explained by specific conductivity.  A 
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negative relationship existed between spring peeper abundance and this water quality 

variable.  The greatest variation in American bullfrog abundance was explained by mean 

daily capture of bullfrog tadpoles (92%) and specific conductivity (77%) in 2005 and 

2006, respectively.  American bullfrog abundance was positively and negatively related 

with tadpole abundance and specific conductivity.  Most of the variation in pickerel frog 

abundance was explained by abundance of pickerel frog tadpoles both years (98% in 

2005 and 88% in 2006).  Un-ionized ammonia explained 78% and 52% of the variation in 

mean abundance of southern leopard frogs in 2005 and 2006, respectively.  This variable 

was positively related with southern leopard frog abundance (Tables 16 and 17).  Finally, 

specific conductivity explained 82% of the variation in green frog abundance in 2006, 

which was negatively related (Table 17).   

 

Pathology 

Prevalence of eosinophilic infiltrates in the kidney of green frog metamorphs at 

non-access wetlands was greater than at cattle-access wetlands (Z = 2.42, P = 0.02, Table 

18).  No other differences in prevalence of histopathological changes were detected 

between cattle land uses (Fisher’s Z ≤ 1.46, P ≥ 0.15, Table 18).  Differences were not 

detected either in bacterial prevalence (Fisher’s Z ≤ 1.76, P ≥ 0.23, Table 19), parasite 

prevalence (Fisher’s Z ≤ 1.49, P ≥ 0.23, Table 20), or parasite load (Wilcoxon Z ≤ 1.15, P 

≥ 0.25, Table 21) between cattle land uses.  

Four pathogenic bacteria were isolated from green frog metamorphs: 

Acinetobacter lwoffi, Aeromonas hydrophila, Chryseobacterium meningosepticum and 

Pseudomonas spp. (Table 19).  Extramedullary hematopoiesis was found in the liver of 
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32% and 15% of green frogs sampled in cattle-access and non-access wetlands, 

respectively (Table 18).  Myxospridia were identified in the kidneys of 32% and 25% of 

green frogs sampled in cattle-access and non-access wetlands, respectively (Table 18).  

Other parasites including trematodes were identified in the kidneys of 21% and 15% of 

the sampled green frogs in cattle-access and non-access wetlands, respectively.  

Trematodes also were identified in granulomas at the base of the lungs of one green frog 

metamorph sampled from a cattle-access wetland, and cutaneously in another sampled 

green frog metamorph from a non-access wetland.  Parasites including Ichthyophonus 

spp. and trematodes were identified in the skeletal muscle of 11% and 10% of the 

sampled green frogs in cattle-access and non-access wetlands, respectively (Table 18).  In 

addition, one enterovirus was detected in the feces of a green frog metamorph sampled at 

a non-access wetland.  The GenBank BLAST search (NCBI 2005) on sequences obtained 

by PCR of Ranavirus revealed that Frog virus 3 was detected in three green frog 

metamorphs at non-access wetlands and one malformed bullfrog metamorph with 

microphthalmia captured at a cattle-access wetland.   

Thirty-six individuals (2%) of all individuals captured in pitfall traps were 

malformed, and 11 malformation types were documented (Table 22).  Brachydactylyl 

malformations and malformations due to injuries were more prevalent in cattle-access 

wetlands (Fisher’s Z ≥ 2.23, P ≤ 0.05).  No other differences were detected in the 

prevalence of other malformation types between cattle-access treatments (Fisher’s Z ≤ 

1.44, P ≥ 0.27, Table 22).  Overall, malformation rates of individuals did not differ 

between cattle-access (42%) and non-access (58%) wetlands (Z = 1, P = 0.317).  
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Trematode metacercariae were identified in three individuals; one of these individuals 

was captured at cattle-access wetlands and two were captured at non-access wetlands.   

Five individuals were opportunistically collected due to overt signs of disease: 

four of these were from cattle-access wetlands and one was from a non-access wetland 

(Table 23).  An American toad with an irregular black focus of ecchymosis on the head 

was collected from a cattle-access wetland (BUAM 1, Table 23).  The organisms 

Penicillium spp. and Trichoderma spp. were identified from the facial lesions of this 

individual along with seven bacterial species (Table 23).  Twelve bacterial species were 

isolated from the liver, kidney, intestine and abdominal swab of this individual (Table 

23).  The bacterial species Brevibacterium spp. and Delftia acidovorans were isolated 

from a cutaneous lesion and the abdominal swab of this individual (Table 23).  

Histological examination found cestodes in the gastrointestinal tract, liver, heart and 

mesentery, but no inflammation or degenerative changes were noted.   

Another American toad (BUAM 2, Table 23) was opportunistically collected 

from a cattle-access wetland due to a 5 mm swelling at the midpoint of the right rear 

tibia-fibula region.  This lesion was found to be a space filled with clear serous fluid.  

Histological examination of the lesion revealed dilated vascular spaces but no 

inflammatory cells or other pathological findings.  The bacteria Pseudomonas fluorescens 

and P. stutzeri were isolated from the kidneys and abdominal swab, respectively (Table 

23).  Two fungi, Candida albicans and C. guilliermondii, were isolated from the 

intestines and abdominal swab, respectively.  The differential white blood cell count of 

heart blood was 8% segmented neutrophils, 26% lymphocytes, 12% monocytes, 53% 

basophils, and 1% metamyelocytes.  Due to time constraints, white blood cell counts 
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were not taken for all individuals.  Abnormal morphological changes were not noted for 

any of the blood cells.  Parasitological examination of a green frog (RACL 1, Table 23) 

collected from a cattle-access wetland due to swollen regions on a hind limb found low 

intensity infection by parasitic nematodes and moderate intensity of flagellate protozoans 

in the feces of the specimen.  Aeromonas hydrophila was isolated from the lesion (Table 

23).  Histological examination of a southern leopard frog (RASP 1, Table 23) with 

swellings on the right rear limb collected from a cattle-access wetland found that the 

swellings contained serous fluid and had no inflammatory cell infiltrates.  Trematodes 

and nematodes were identified in the kidneys and lungs, respectively.  Citrobacter 

freundii was isolated from the intestines of this individual (Table 23).  Parasitic 

examination also found nematodes and flagellated protozoans in the feces.  

A third American toad (BUAM 3, Table 23) collected from a non-access wetland 

was lethargic and the skin on the feet was black.  Gross examination revealed dermal 

lesions, diffuse eroded excoriations, and numerous parasitic cysts throughout the 

coelomic cavity, on the serosa and throughout the parenchyma of all organs.  Histological 

examination reported cestodes with granulomatus inflammation in the kidney, liver, 

gastrointestinal tract and heart, and multifocal edema and vacuolar degeneration in the 

skeletal muscle.  The bacteria Chyseobacterium indologenes and Staphylococcus 

epidermidis were isolated from a leg lesion on this individual (Table 23).  

 

Discussion 

The results of my study suggest that cattle may have species-specific effects on 

postmetamorphic amphibians that lead to changes in community composition.  Mean 
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relative abundance of green frog metamorphs in non-access wetlands was greater than in 

cattle-access wetlands.  However, American toads were more abundant in cattle-access 

wetlands than in wetlands where cattle were excluded.  A variety of environment co-

factors of cattle land use may be responsible for these trends.  I documented that cattle 

negatively impact shoreline vegetation in wetlands.  In addition, a concurrent study 

(Schmutzer 2007) found that water quality and detrital biomass were lower in cattle-

access wetlands.  I also found that postmetamorphic body size generally followed 

density-dependent trends.  A discussion of possible mechanisms driving species-specific 

abundance and body size trends follows.  I also discuss some trends observed in pathogen 

prevalence between cattle land uses.  Finally, a discussion on trends in monthly relative 

abundance and species richness is provided.      

 

Species-specific Abundance 

Shoreline vegetation.—Height, percent horizontal cover, and percent vertical 

structure of vegetation in non-access wetlands were greater than in cattle-access wetlands 

both years.  It is well-known that cattle reduce vegetation in wetlands through mechanical 

trampling and herbivory (Trimble and Mendel 1995, Belsky et al. 1999, Jansen and 

Robertson 2001, Ausden 2005).  This is a concern for many amphibian species because 

emergent shoreline vegetation provides cover from predators and inclement weather, 

protection from desiccation, and sites for amplexus, oviposition and foraging (Duellman 

and Trueb 1986, Hazell et al. 2001, Jansen and Healey 2002, Dodd 2004).  A reduction in 

vegetation at amphibian breeding sites results in a decrease in relative abundance (Healey 

et al. 1997, Joly et al. 2001, Houlahan and Findlay 2003).  For example, Jansen and 
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Healey (2002) found that adult frog abundance in New South Wales, Australia, was 

positively correlated with the amount of emergent shoreline vegetation.  However, 

responses to reductions in vegetation from cattle may be species-specific, depending on 

habitat preferences governed by species-specific life history traits and adaptations.  I 

found that green frogs were more abundant in non-access wetlands, which had greater 

shoreline vegetation.  Others have reported high abundance of green frogs associated 

with shoreline vegetation (Woodford and Meyer 2003, Lichtenberg et al. 2006).  

Although green frogs are habitat generalists (Minton 1972, Hecnar 1997, Conant and 

Collins 1998), adults typically spend most of the time during the growing season near the 

shoreline of wetlands in areas with emergent vegetation (Minton 1972).  Green frog 

tadpoles also spend most of the day in shoreline emergent vegetation, presumably hiding 

from predators and foraging (Warkentin 1992).  Hence, this suggests that green frogs 

may be attracted to wetlands with greater amounts of shoreline vegetation, as occurred in 

non-access wetlands.   

In contrast, I found a greater abundance of American toads in cattle-access 

wetlands, and the same trend was observed in Fowler’s toads.  American and Fowler’s 

toads also are considered habitat generalists (Semlitsch and Bodie 2003), but they may be 

more adapted for areas with less vegetation.  True toads commonly inhabit xeric 

environments (Conant and Collins 1998), and are able to withstand a greater loss of body 

water than ranids (Thorsen 1955, Schmid 1965, Duellman and Trueb 1986).  Although I 

did not measure differences in light intensity or ground temperature, it is reasonable to 

assume that these abiotic factors were greater along shorelines at cattle-access wetlands 

due to increased exposure to solar radiation associated with less vegetation.  Vegetation 
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also was shorter in the uplands at cattle-access wetlands (Burton, personal observation).  

Thus, the terrestrial micro-climate at cattle-access wetlands and their associated uplands 

may have been less hospitable for green frogs than for American or Fowler’s toads.          

Greater abundance of toads at cattle-access wetlands also may have been related 

to differential predation rates.  Adult toads have numerous glanular glands that produce 

toxins making them unpalatable to most vertebrate predators (Duellman and Trueb 1986, 

Wright and Whitaker 2001).  In addition, toad tadpoles are unpalatable to fish predators 

(Kats et al. 1988).  Thus, reduction in shoreline vegetation likely does not increase their 

probability of predation.  In fact, Woodward (1983) suggested that Bufo tadpoles are 

primarily predated by aquatic invertebrates, which are found in shoreline vegetation.  

Correspondingly, Bufo tadpoles frequently avoid vegetated areas where invertebrate 

predation may be high (Denton and Beebee 1997, Swart and Taylor 2004).  On the other 

hand, ranids have fewer glanular glands as adults, and green frog tadpoles frequently 

avoid predation by aquatic vertebrates in shoreline vegetation (Warkentin 1992).     

Another possibility for higher Bufo abundance at cattle-access wetlands may be 

related to morphology and locomotion.  Toads have short legs, which reduces their 

jumping capability.  Thus, toad saltatorial locomotion is composed of several short hops 

compared to ranids which jump farther (Duellman and Trueb 1986).  It is possible that 

toads spend less energy traversing areas with shorter vegetation, because there are fewer 

obstructions.  In previous studies, American toads have been found in high association 

with less vegetated open areas (Guerry and Hunter 2002), and they are common in 

terrestrial environments that are human modified (Kolozsvary and Swihart 1999, 

Lehtinen et al. 1999, Waldick et al. 1999).   
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Toads also may be taking advantage of less competition with and predation by 

ranids at cattle-access wetlands.  Toads comprised over 1/3 of captures at cattle-access 

wetlands and 5% of captures at non-access wetlands, whereas green frogs comprised over 

60% of captures in non-access wetlands and less than 1/3 of captures at cattle-access 

wetlands.  Breeding call index of American and Fowler’s toads also was greater at access 

wetlands.  American and Fowler’s toads have short larval stages (i.e., approximately 2 

months, Dodd 2004), and are thought to be inferior competitors to larger ranid species, 

such as green frogs and American bullfrogs (Alford and Wilbur 1985, Wilbur and Fauth 

1990).  In addition, ranid tadpoles, particularly those individuals that overwinter, can be 

macrophagous and predate on eggs and tadpoles of other species including toads 

(Petranka et al. 1994, Petranka et al. 1998, Petranka and Kennedy 1999).  More studies 

are needed exploring competitive exclusion and predation interactions of ranids and 

bufonids.   

Several other common species exhibited trends in abundance between cattle land 

uses.  In general, American bullfrogs were more abundant at non-access wetlands.  This 

species, similar to the green frog, is considered to be associated more strongly with 

aquatic systems (Thorson 1955, Conant and Collins 1998), and thus they may be unable 

to tolerate desiccation as much as species associated more with the terrestrial 

environment (i.e., toads, Schmid 1965).  As a result, bullfrogs may more adapted to 

wetland systems with greater amounts of shoreline vegetation that affords protection 

from the sun.  In fact, bullfrog abundance has been positively associated with amount of 

woody litter along shorelines (Lichtenberg et al. 2006).  American bullfrog adults and 

tadpoles are known to be good competitors, therefore it is unlikely that this species would 
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be competitively displaced by other species from cattle-access wetlands (Alford 1989b, 

Lannoo 2005).   

Although statistical differences were not detected, mean abundance of pickerel 

and southern leopard frogs was greater at cattle-access wetlands.  This is contradictory to 

trends for the other two ranids that I captured: green frogs and American bullfrogs.  I 

hypothesize that this may be related to differences in their life histories.  Pickerel and 

southern leopard frogs at my study site bred earlier in the growing season and their larvae 

metamorphosed usually in 3 months compared to American bullfrogs and green frogs 

which bred in the summer and their larvae often overwintered.  In addition, juvenile and 

adult pickerel and southern leopard frogs are known to migrate large distances to 

terrestrial foraging habitats during summer (Conant and Collins 1998).  Green frogs and 

American bullfrogs rarely travel far from breeding sites except during dispersal events 

(Lannoo 2005).  Thus, because these pickerel and southern leopard frogs spend less time 

at wetlands, perhaps potential negative effects associated with reduced shoreline 

vegetation at cattle-access wetlands are less important.     

Unfortunately, capture rates of other species were small, which reduced my 

ability to document possible additional cattle land-use trends.  However, in general, I 

would hypothesize that reduction in shoreline emergent vegetation would negatively 

impact other species such as caudates.  Female caudates, especially Ambystomatids, are 

known to attach fertilized egg masses to submersed vegetation (Lannoo 2005).  While my 

results suggest reduced shoreline vegetation caused by cattle has species-specific effects, 

they also support the hypothesis that shoreline vegetation is important for some species 

and should be considered in conservation (Semlitsch and Bodie 2003).  Appendix III 
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contains all the amphibian species currently documented in Cumberland County.  Of 

these, there are two salamander species (four-toed salamander [Hemidactylium scutatum], 

spotted salamander [Ambystoma maculatum]) that use permanently flooded wetlands but 

were not found in my study wetlands.  The four-toed salamander in particular is listed as 

a species in need of management in Tennessee (TWRA 2004).  It is possible that cattle 

grazing on the Cumberland Plateau creates inhospitable conditions for these species.  

Previous studies on salamanders highlight the importance of connectivity between intact 

upland forests and wetland breeding sites (Semlitsch 1998, Guerry and Hunter 2002).   

 Water quality.—Differences in water quality between cattle-access and non-

access wetlands may have contributed to observed amphibian trends by impacting larval 

populations and postmetamorphic recruitment.  The larvae of all species that I 

documented in my study, except two (Ocoee salamander, Desmognathus ocoee and slimy 

salamander, Plethodon glutinosus), spend a portion of their life cycle developing in lentic 

systems.  The permeability of amphibian embryos and tadpole skin makes them sensitive 

to changes in water chemistry (Vitt et al. 1990).  Cattle use of wetlands decreases water 

quality (Belsky et al. 1999, Jansen and Healey 2002, Scrimgeour and Kendall 2002, Line 

2003, Collins 2004, Knutson et al. 2004, Schmutzer 2007).  The reduction in shoreline 

(and upland) vegetation that I observed at cattle-access wetlands also can increase erosion 

and run-off into wetlands, leading to higher sediment loads and turbidity (Trimble and 

Mendel 1995, Belsky et al. 1999, Scrimgeour and Kendall 2002, Line 2003, Knutson et 

al. 2004).  Cattle defecation and urination in and around wetlands also increases nutrient 

inputs in the water (Hooda et al. 2000, Schmutzer 2007).  Increased nitrate and ammonia 

levels are known to increase eutrophication in wetlands (Mitsch and Gosselink 2000), 
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and eutrophic wetlands have higher temperatures and lower dissolved oxygen (Cole 

1994, Boyer and Grue 1995, Schmutzer 2007).  

Poor water quality in agricultural landscapes has been shown to reduce amphibian 

diversity (Bonin et al. 1997, Lehtinen et al. 1999, Schmutzer 2007).  Field and laboratory 

studies have shown that pH (Freda 1986, Sparling et. al 1995, Laposata and Dunson 

2000, Gerlanc and Kaufman 2005), temperature (Smith-Gill and Berven 1979, Laposata 

and Dunson 2000), conductivity (Laposata and Dunson 2000), dissolved oxygen 

(Laposata and Dunson 2000), and increased nutrient levels (nitrates; Berger 1989, 

Laposata and Dunson 2000, Smith et al. 2006 and ammonia; Jofre and Karasov 1999) can 

affect development and survival of larval and embryonic amphibians.  A study that ran 

concurrent with mine at the same wetlands found greater specific conductivity and 

turbidity and lower dissolved oxygen at cattle-access wetlands (Schmutzer 2007).  

Similarly, trends suggest that temperature, as well as nitrate and ammonia levels, were 

higher at cattle-access wetlands, indicating that cattle reduced water quality at these 

wetlands (Schmutzer 2007).  

Differences in tolerance to reductions in water quality and developmental life 

history traits of amphibian larvae may be drivers contributing to species-specific 

postmetamorphic abundance trends at cattle-access and non-access wetlands.  Species 

that overwinter in sediment at the bottom of wetlands, such as green frogs and American 

bullfrogs, have been found to be more sensitive to elevated nutrient levels than other 

species, possibly due to longer exposure to stressors in the aquatic environment 

(Houlahan and Findlay 2003).  For example, American toad embryos have been found to 

tolerate higher ammonia levels than green frog embryos (Jofre and Karasov 1999).  
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Ammonia absorbed by amphibians is detoxified in the liver, however if levels are too 

high, it cannot be detoxified rapidly enough and oxidative metabolism is disrupted 

(Wright and Whitaker 2001).  In a laboratory study, green frog embryos exhibited a 

decline in survival at ammonia levels 0.6 – 0.9 mg/L, whereas there was no increase in 

mortality of American toad embryos up to 0.9 mg/L (i.e., the highest concentration in the 

study, Jofre and Karasov 1999).  Schmutzer (2007) found that mean ammonia levels were 

0.4 mg/L in non cattle-access wetlands and 0.7 mg/L in cattle-access wetlands.  High 

ammonia levels at cattle-access wetlands may have caused reduced embryonic hatching 

of green frogs and American bullfrogs, thus reducing postmetamorphic recruitment.  

American toads, on the other hand, may not have experienced any population reductions 

due to ammonia levels.  Moreover, Bufo larvae at cattle-access wetlands may have been 

able to take advantage of reduced competition for resources (Schmutzer 2007), leading to 

greater postmetamorphic recruitment.    

Other studies suggest that the less common species I captured also could be 

negatively impacted by a decrease in water quality at cattle-access wetlands.  Diamond et 

al. (1993) reported negative effects of ammonia >0.9 mg/L on spring peepers.  Low pH 

has been shown to cause embryonic or larval mortality in each of the anuran species that I 

captured (Gosner and Black 1957, Freda and Dunson 1985, Sparling et al. 1995) as well 

as some Ambystoma species (Pough and Wilson 1977, Freda 1986, Rowe et al. 1992).  

Eastern red-spotted newts (Notophthalmus viridescens) abundance has been negatively 

correlated with turbidity (Brodman et al. 2003).  More water quality studies are needed to 

improve our understanding of species-specific tolerances, and how various water quality 

variables may affect amphibian species distributions.  Nonetheless, these previous studies 
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support the hypothesis that decreased water quality observed at cattle-access wetlands 

may be contributing to decreases in postmetamorphic amphibian abundance for some 

species. 

Breeding call surveys.—For toads and spring peepers, trends in breeding call 

indices followed larval and postmetamorphic abundance.  Call indices at cattle-access 

wetlands for American and Fowler’s toads were greater than at non-access wetlands, 

while the opposite relationship existed for spring peepers.  As discussed previously, these 

trends may be a consequence of differences in shoreline vegetation structure and water 

quality.  Interestingly, breeding call indices for American bullfrogs and green frogs did 

not differ between land uses despite lower larval and postmetamorphic abundance.  This 

result provides additional evidence that cattle-access wetlands may function as ecological 

traps for breeding American bullfrogs and green frogs. 

 

Egg Mass Abundance 

Considering the trends in postmetamorphic abundance, one might have expected 

greater abundances of toad, pickerel and southern leopard frog egg masses observed at 

cattle-access wetlands, and more American bullfrog and green frog egg masses at non-

access wetlands.  However, there was an overall trend for greater egg mass abundance, 

regardless of species, in cattle-access wetlands.  First, it is important to note that very few 

egg masses were observed (i.e., 20 total across 8 wetlands in 2 years), so inferences from 

these data should be interpreted cautiously.  It possible that micro-habitat conditions for 

breeding amphibians were better for all species at cattle-access wetlands, and that 

decreases in abundance of green frog and American bullfrog metamorphs was a 
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consequence of high embryo and larval mortality.  However, breeding call indices for 

green frogs and American bullfrogs did not support this suggestion.  I believe differences 

in egg mass abundance were impacted by differences in detectability.  I believe that 

greater amounts of vegetation at non-access wetlands reduced my ability to locate eggs.  

In contrast, I had very little difficulty seeing egg masses at cattle-access wetlands, 

because there was very little vegetation to conceal them (Burton, personal observation).  

Lastly, for toads and gray treefrogs, the greater numbers of breeding adults heard at 

cattle-access wetlands may have contributed to higher egg masses abundance for these 

species.     

 

Amphibian Community Metrics 

I did not detect any differences between cattle land-use types in postmetamorphic 

amphibian species richness and diversity in 2005 and combined years, respectively.  In 

2006 and both years combined, there were land-use effects for species richness, but it 

varied by month and sampling method (i.e., pitfalls versus breeding call surveys).  Pitfall 

species richness was greater at cattle-access wetlands in April, but greater in non-access 

wetlands in July and August 2006.  Trends were the same when years were combined.  

On the other hand, breeding call species richness was greater in cattle-access wetlands in 

June in 2006 and across years.  The lack of trends between land-use types suggests that 

cattle may not strongly influence amphibian species richness or diversity.  This result is 

consistent with Gray et al. (2004a) that reported no differences existed in 

postmetamorphic species diversity between amphibian communities at wetlands 

surrounded by agricultural cultivation compared to those at undisturbed grassland 
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wetlands.  Homyack and Giuliano (2002) also found that excluding cattle from a stream 

did not increase amphibian species richness.  However, others have found negative 

associations between cattle grazing and amphibian species richness (Jansen and Healey 

2002, Knutson et al. 2004).  The inconsistencies in these studies further emphasize the 

likelihood of species-specific and perhaps regional differences in the relative impacts of 

cattle on amphibians.  Also, in some cases, stocking rates were not reported (Knutson et 

al. 2004), while for other studies (e.g., Homyack and Giuliano 2002, Jansen and Healey 

2002), cattle grazing intensity was calculated based on pasture size instead of wetland 

size.  This makes direct comparisons among studies tenuous. 

Even though species richness and diversity did not differ between cattle land uses, 

species composition was altered.  Species composition was more evenly distributed at 

cattle-access wetlands, with a greater percentage of bufonids compared to non-access 

wetlands.  At non-access wetlands, captures in pitfalls were dominated by ranids.  Again, 

these differences in community composition likely reflect species-specific tolerances to 

stressors and habitat preferences related to vegetation structure.   

 

Habitat Models   

Habitat models that I built explained substantial variation (44 – 99%) in relative 

abundance of postmetamorphic amphibians for several species at my study wetlands.  

Significant explanatory variables included ammonia, specific conductivity, turbidity, 

vertical vegetative structure, cattle density and species-specific abundance of tadpoles.  

Models were developed separately for 2005 and 2006, because I anticipated yearly 

variations in postmetamorphic abundance and explanatory variables.  Indeed, one finding 
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that I made was that within species, significant explanatory variables often differed 

between years.  This result suggests that environmental stressors may impact species 

differently depending on yearly circumstances, and lends support to the hypothesis that 

stressors are not independent (Hecnar and M’Closkey 1996, Laposata and Dunson 2000, 

Brodman et al. 2003, Gerlanc and Kaufman 2005, Loman and Lardner 2006).  Below are 

discussions of the final models and the relationships between significant explanatory 

variables and species-specific postmetamorphic abundance. 

Significant variation in relative abundance of American toads was explained by 

cattle density and nitrite concentration in the water in 2005.  Cattle density explained 

83% of the variation in American toad abundance.  The standardized parameter estimate 

for cattle density was 1.2, indicating a strong positive relationship.  In 2006, turbidity and 

un-ionized ammonia explained 90% and 7% of the variation in American toad relative 

abundance, respectively.  Abundance was strongly positively related to turbidity and 

weakly negatively related to ammonia.  Similar final models existed for Fowler’s toad.  

In 2005, un-ionized ammonia and nitrite explained 77% and 17% of the variation in 

relative abundance.  Ammonia was strongly positively related and nitrite moderately 

negatively related with abundance.  In 2006, vertical structure of vegetation explained 

85% of the variation in abundance, and this variable was negatively correlated with 

abundance.  Water temperature explained an additional 12% variation in Fowler’s toad 

abundance, and it was positively related. 

These results provide further evidence that toads are associated with areas that are 

poorer in water quality and have less shoreline vegetation.  Interestingly, nitrite was 

negatively associated with relative abundance of both toads.  Nitrite absorbed by tadpoles 
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oxidizes iron in hemoglobin to form methemoglobin, which cannot bind to oxygen 

(Johnson et al. 1987, Hecnar 1995), leading to low oxygen carrying capacity of the blood 

and a corresponding decrease in health of the individual.   In undisturbed aquatic systems, 

levels of nitrites are usually low, but in areas with high organic matter concentrations, 

nitrite levels can be >1 mg/L (McCoy 1972).  Schmutzer (2007) found that mean nitrite at 

cattle-access and non-access wetlands were 0.11 and 0.07 mg/L, respectively.  Nitrite 

quickly oxidizes to nitrate in aquatic environments (Rouse et al. 1999), thus may not 

reach critical levels.  However, nitrates may interact with other stressors and have 

negative synergistic effects on developing tadpoles.  Indeed, this hypothesis needs to be 

tested for toads and other amphibian species.     

The greatest variation in spring peeper abundance in 2005 was explained by 

specific conductivity (64%).  No explanatory variables were significant in 2006.  A 

standardized parameter of –0.78 indicated a strong negative relationship between specific 

conductivity and spring peeper abundance.  In 2006, the greatest variation in relative 

abundance of American bullfrogs (77%) and green frogs (82%) was explained by specific 

conductivity.  Relative abundance of these species also was negatively related.  Specific 

conductivity is a measure of total dissolved solids in the water, thus an index of the 

concentrations of nutrients, metals, and sediment.  Laposata and Dunson (2000) found 

that American bullfrog egg hatching success was negatively correlated with specific 

conductivity in temporary ponds with wastewater effluent inputs.  Brodman et al. (2003) 

reported that spring peeper abundance was negatively correlated with concentrations of 

detergents and chloride.  As mentioned earlier, high levels of nutrients (specifically 

nitrogen compounds) have been shown to increase American bullfrog mortality and 
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decrease green frog growth (Smith et al. 2006).  Knutson et al. (2004) reported that green 

frog and spring peeper abundance was negatively associated with nutrients and sediment.  

Nutrient and sediment inputs increase ions in the water, leading to a rise in conductivity, 

and apparently a negative effect on some amphibian species.   

The greatest variation in American bullfrog abundance (92%) in 2005 and 

pickerel frogs both years (98% and 88% in 2005 and 2006) was explained by relative 

abundance of their tadpoles.  A strong positive relationship existed between species-

specific postmetamorphic abundance and tadpole abundance in all cases.  These results 

suggest that larval recruitment may have been more important than other possible abiotic 

or biotic drivers of postmetamorphic abundance for these particular years and species.  

Finally, in both years, southern leopard frog abundance was strongly positively 

associated with ammonia (78% and 52% of variation explained in 2005 and 2006, 

respectively), suggesting that this species may be able to tolerate higher levels of 

ammonia.  To my knowledge, no toxicology studies have yet examined the effects of 

ammonia on southern leopard frogs.  Future controlled studies are needed to support or 

refute hypotheses related to species-specific tolerances to water quality variables as they 

may be highly variable even within a genus.     

 

Monthly Trends 

Species richness in pitfall traps was greatest in June and July at cattle-access and 

non-access wetlands, respectively, in 2006 and across years.  The majority of my captures 

(96%) during these months were metamorphs, which reflects the months when most 

amphibians are metamorphosing in Tennessee.  At my wetlands, toads began 
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metamorphosing in May and continued through June, whereas most ranid tadpoles 

metamorphosed in June and July.  Also, all five salamander species were caught in June 

or July, which contributed to richness estimates.  Similar trends existed in a study in 

Rhode Island that included six of the same species in my study; they reported peak 

metamorph emigration in June (Paton and Crouch 2002).  An important trend that was 

found both years was that the greatest number of metamorph captures in June and July 

occurred in cattle-access wetlands and non-access wetlands, respectively.  Earlier 

metamorphosis in cattle-access wetlands may reflect accelerated development due to 

greater levels of stress in tadpoles inhabiting these wetlands (Newman 1992).  This 

hypothesis needs to be tested.      

The greatest species richness for call surveys occurred in May both years and for 

both land uses.  This probably reflects the overlap in breeding season for most of the 

species at my study site.  All Bufo, Hyla, and Rana species were heard calling in May in 

at least one year of my study.  These results reflect the typical breeding life history of 

these species in Tennessee (Dodd 2004).  Similarly, the greatest species richness of 

calling amphibians in Texas occurred when the breeding seasons of Bufo, Hyla, and Rana 

species overlapped (Saenz et al. 2006).  Monthly species composition also reflects 

species-specific breeding seasons and metamorph emergence.  In general, toads were 

heard and captured earlier in the year, whereas green frogs and American bullfrogs at my 

study site bred and metamorphs emerged later in the year. 

Egg mass abundance of pickerel frogs and southern leopard frogs was greater in 

April than all other months across years.  Toads also followed this trend.  American 

bullfrogs, green frogs and Cope’s gray treefrogs showed a trend for greatest egg mass 
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abundance in July.  Overall, egg mass abundance corresponded to the typical breeding 

season of these species (Lannoo 2005).  I also found that vegetation structure was always 

greatest in August, which was expected as per the growing season.  Soil compaction 

tended to be less during April, which may have corresponded with spring rains.       

 

Postmetamorphic Body Size 

In general, postmetamorphic body size was greater for individuals captured at 

cattle-access wetlands for all species, except Fowler’s and American toads.  This trend 

was especially noticeable for metamorphs.  These results are directly correlated with 

relative abundance of postmetamorphic and larval amphibians at my study wetlands (This 

Study, Schmutzer 2007).  These results echo previous studies on postmetamorphic body 

size at agricultural wetlands, which reported density-dependent relationships with body 

size (Oldham 1985, Gray and Smith 2005).  Density-dependent relationships build on the 

premise that fewer individuals imply a greater amount of resources for each individual, 

thus lower competition (Wilbur 1976, 1977a, b, Collins 1979, Semlitsch and Caldwell 

1982, Goater 1994).  It has been reported that density of conspecifics in the terrestrial and 

aquatic environments is negatively related to postmetamorphic body size (Wilbur 1977a, 

Goater 1994, Morey and Reznick 2001).   

The only species that did not follow a postmetamorphic density-dependent trend 

were pickerel frogs and southern leopard frogs.  Mean postmetamorphic abundance of 

these species was greater at cattle-access wetlands and so was body size of metamorphs.  

However, Schmutzer (2007) found that abundance of pickerel frog and southern leopard 

frog tadpoles was less at my cattle-access wetlands compared to the non-access wetlands.  
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Therefore, body size of metamorphs may have been strongly influenced by larval density, 

which has been reported in controlled studies (e.g., Wilbur and Collins 1973, Brady and 

Griffiths 2000).      

 

Pathology 

Green frog metamorphs.—I detected no statistical differences in prevalence of 

bacteria, viruses or parasites in green frog metamorphs collected at cattle-access and non-

access wetlands.  This may reflect a true lack of biological trends or be a consequence of 

small samples sizes (n = 19 and 21 metamorphs collected for access and non-access 

wetlands).  If the former explanation is true, this may be a result of immunocompromised 

individuals may not be surviving through metamorphosis, hence resulting in only 

clinically “normal” individuals being collected.  Indeed, all amphibians undergo a 

temporary reduction in immune function during metamorphosis as their larval immune 

system is being dismantled and restructured for terrestrial life (Rollins-Smith 1998), 

which increases their susceptibility to infection (Wright and Whitaker 2001).  Thus, the 

greatest mortality associated with diseases may occur during this developmental stage 

(Rachowicz et al. 2006).  Moreover, infections of amphibians by pathogens may be 

greatest during this period (Gray et al. 2007b), but eliminated from the body during the 

juvenile stage as the immune system redevelops.  Indeed, additional research is needed 

comparing pathogen infection in amphibians exposed to developmental and 

environmental stressors during different life stages.   

I did observe some histological changes in the green frog metamorphs that I 

collected.  Eosinophilic infiltrates (EOS) in the kidneys were 2.5X more prevalent in 
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individuals collected from non-access wetlands.  This is an inflammatory reaction often 

suggestive of parasite presence.  In fact, 33% of individuals with parasites in their 

kidneys also had EOS in their kidneys.  Although amphibians are normally hosts to a 

variety of parasites and show no signs of disease, parasites can become pathogenic 

depending on the species of parasite, the intensity of parasite infection, and presence of 

other stressors (Fox et al. 2002).  Myxospridia were identified in the kidneys of 28% of 

the sampled green frogs.  Myxospridia infection in the renal tubules is common in green 

frogs (Wright and Whittaker 2001).  However, no specific disease has been attributed to 

this organism, and usually histological changes associated with Myxospirdia are minimal 

in the affected renal tubes (Wright and Whittaker 2001).  Other parasites in the kidneys 

may or may not have been negatively affecting the collected green frogs.  Prevalence of 

parasitic cysts in the kidneys was 40% greater in cattle-access wetlands.  The identity of 

these parasites is unknown, but they may have been trematodes because they are common 

in amphibians (Wright and Whitaker 2001).  Some trematode species use amphibians as 

an intermediate host, while others use them as their final host (Smyth 1994).  Histological 

changes associated with renal trematodes include inflammation around cysts, which 

could lead to renal dysfunction (Martin and Conn 1990).  Parasites in the respiratory 

tract, however, are not typical of healthy amphibians.  One green frog from a cattle-

access wetland had granulomas that contained trematodes in the base of the lungs.  In this 

location, this type of lesion could potentially be life threatening if it blocked the bronchial 

lumen or if opportunistic bacteria (e.g., Pseudomonas spp.) gained entry to these areas.   

Another individual collected from a non-access wetland had cutaneous 

trematodes.  The most common trematodes found in the skin of amphibians are in the 
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class Digenea (Wright and Whittaker 2001).  Some species, such as Clinostomum 

attenuatum, are easily visible in live amphibians (Miller et al. 2004, Sutherland 2005, 

Gray et al. 2007c).  In fact, Gray et al. (2007c) reported that metacercariae of C. 

attenuatum could be seen in the skin of Great Plains toads (Bufo cognatus), barred tiger 

salamanders (Ambystoma tigrinum mavortium) and New Mexico spadefoots (Spea 

multiplicata) without any magnification.  The species of trematode in my specimen was 

not identified, but considering its location, may have been C. attenuatum.  Metacercariae 

of C. attenuatum have not been linked to amphibian malformations (Sutherland 2005), 

but pathological changes may occur.  Miller et al. (2004) noted that in heavily infected 

amphibians, metacercariae may be found near organs, where they may negatively 

influence survival and reproduction.  No pathological changes associated with the 

cutaneous trematode, however, were noted in my specimen. 

 Two parasites, Haplometra spp. and Glypthelmins spp., are known to infect the 

intestines following penetration of the epidermis of many species of North American 

ranids (Wright and Whittaker 2001).  As previously mentioned, most amphibian-parasite 

relationships do not degrade the health of the amphibian.  However, parasites have the 

potential to become pathogenic in immunocompromised individuals (Fox et al. 2002).  

The skin of amphibians is the first line of defense against infection from foreign 

pathogens given it produces antibacterial and antifungal secretions, yet it also may 

contain many bacteria and parasites in healthy amphibians (Wright and Whittaker 2001, 

Rollins-Smith 2001, Nicholas and Mor 1995).  Immunocompromised individuals could 

become internally infected with the parasites that normally inhabit their skin or induce 

stress such that opportunistic bacteria or fungi may become pathogenic.   
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Trematodes and Ichthyophonus spp. were identified in the skeletal muscle of five 

sampled individuals, with approximately equal prevalence between cattle land-use types.  

There are over 20 genera of trematodes that have been reported in the skeletal muscle of 

amphibians (Flynn 1973).  Infection from all of these trematodes results in the formation 

of granulomas (Wright and Whitaker 2001).  Infection by Ichthyophonus in wild 

amphibians appears to cause the same response (Mikaelian et al. 2000).  Mikaelian et al. 

(2000) reported Ichthyophonus-like organisms in skeletal muscle of six different 

amphibian species, including green frogs.  The effect of small numbers of Ichthyophonus 

spp. on the host likely is minimal; however, high loads could potentially impair the 

mobility of the infected individual, which would increase the probability of predation or 

decrease foraging efficiency.  In my study, two of the three sampled green frogs that had 

Ichthyophonus in the skeletal muscle also were infected with fungal organisms or bacteria 

that can be pathogenic.  Dual infection by potentially pathogenic organisms can suggest 

impaired immune function (Wright and Whitaker 2001).  One of these individuals was 

collected at a cattle-access wetland and the other at a non-access wetland. 

Trematodes, nematodes, amoeba-protozoan, and flagellated protozoans also were 

identified from the feces of collected green frog metamorphs.  Three of four individuals 

reported to have fecal parasites at access and non-access wetlands typically also showed 

signs of inflammation in the kidneys, parasites in the skeletal muscle, FV3, or potentially 

pathogenic bacteria elsewhere in the body.  These cases of multiple infection suggest that 

either individuals were stressed due to the presence of other pathogens, and the parasites 

opportunistically invaded, or the parasites were causing immunosuppression facilitating 

infection by other pathogens.   
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Mild to occasionally moderate histopathological changes (e.g., cellular 

degeneration, inflammatory cell infiltrates) were noted in 98% of the green frog 

metamorphs, and suggest they were being pathogenically challenged.  All of the bacteria 

present in the metamorphs are typically found in water, soil, on plants, or are part of the 

normal intestinal flora of amphibians (Buchanan and Gibbons 1974, Igra-Siegman et al. 

1980, Lloyd 1994, Palumbo 1993, Murray 2003).  Four of these bacteria, however, are 

known to be potentially pathogenic to amphibians: Acinetobacter lwoffi, Aeromonas 

hydrophila, Chryseobacterium meningosepticum and Pseudomonas spp.  The bacterium 

Acinetobacter lwoffi has been reported to cause local infections in immunocompromised 

individuals (Li and Lipman 1995, Glorioso et al. 1974), while C. meningosepticum, A. 

hydrophila and Pseudomonas spp. have been associated with bacterial septicemia or red-

leg disease in immunocompromised individuals (Gibbs 1963, Glorioso et al. 1974, 

Brodkin et al. 1992, Mauel et al.  2002).  Signs of red-leg disease include edema and 

systemic hemorrhaging in internal organs and on the skin of the pelvic region causing 

petechial reddening that led to its name (Gibbs 1963, Köhler 2006).  Recent 

investigations have surmised that many of the older reports of amphibian die-offs that 

were attributed to red-leg disease likely were incorrect (Green et al. 2002).  Rather, 

iridovirus infection probably reduced immunocompetence and allowed for secondary 

infection by opportunistic bacteria (Green et al. 2002, Cunningham et al. 1996).  Dual 

infection by FV3 and Aeromonas hydrophila occurred for one of three iridovirus-infected 

individuals in my study.   Previous studies determined that granulomatus inflammation in 

the muscle, enlargement of the liver, spleen and kidneys, and hemorrhagic 

gastrointestinal tracts have been associated with the opportunistic bacteria found in my 
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study (Cunningham et al. 1996, Hubbard 1981, Mauel et al 2002).  In these studies, 

inflammation was not attributed to other pathogens, suggesting that these individuals may 

have been responding to infection from these bacteria.  

Enterovirus or FV3 were documented from four of my collected green frogs.  

Parasites were found in the kidney, feces or skeletal muscle of three of these individuals, 

and Aeromonas hydrophila was isolated from the fourth individual.  Fat necrosis also was 

documented in the fourth individual.  Each of these cases suggests that the virus may 

have been compromising the immune system of the green frog, allowing for parasitic or 

bacterial invasion.  Enteroviruses are ubiquitous throughout the world and are typically 

transmitted by the fecal-oral route (CDC 2007).  Amphibians are known reservoirs of 

these viruses (Wilson and Sande 2001), although the effects of enteroviruses on the 

amphibians are not well understood.   

Frog virus 3 belongs to the Ranavirus genus and is known to cause systemic 

necrosis and hemorrhage in tissues of amphibians (Converse and Green 2005).  

Ranaviruses have been implicated in almost half of reported amphibian die-offs in the 

United States, and their prevalence has been associated with anthropogenic disturbance 

(Daszak et al. 1999 and Converse and Green 2005).  A concurrent study (Gray et al. 

2007a) reported that FV3 prevalence was greater in green frog tadpoles from cattle-

access wetlands compared to those inhabiting non-access wetlands.  In contrast, 

prevalence of FV3 in American bullfrog tadpoles did not differ between cattle land uses.  

Given that I captured fewer green frog metamorphs in cattle-access wetlands, this suggest 

that green frog tadpoles infected with FV3 may not have survived to the 

postmetamorphic stage, thus FV3 may have contributed to observed postmetamorphic 
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abundance trends.  In addition, the results of Gray et al. (2007a) suggest that green frogs 

may be more susceptible to pathogens than American bullfrogs.  Specifies-specific 

susceptibilities to FV3 need to be quantified in the lab, especially for less common 

species.     

Other pathological signs that were documented included extramedullary 

hematopoiesis (EMH), lymphocyte aggregates and inflammatory cells in the intestines.  

Extramedullary hematopoiesis was common in the liver (24%) and kidneys (70%) of 

tested individuals.  Also, prevalence of EMH in the liver was 2X greater in individuals 

collected from cattle-access wetlands than in those from non-access wetlands.  

Extramedullary hematopoiesis is considered normal in amphibian metamorphs (Wright 

and Whitaker 2001), thus may not have been a pathological concern.  Aggregates of 

lymphocytes were present in over 60% of collected green frog metamorphs.  Similar to 

EMH, lymphoid aggregates are common in many organs, though they have not been 

studied in detail (Barrutia et al. 1983, Manning and Horton 1982, Saad and El Masri 

1995).  Over 80% of the sampled individuals also had minimal numbers of inflammatory 

cells in the small and large intestine.  This may have been caused by the dramatic internal 

changes that metamorphs undergo as they convert from omnivory to carnivory (Hoff et 

al. 1999) and their intestinal tract shortens (Wright and Whittaker 2001).    

Opportunistic captures.—Opportunistic captures of two additional species and 

one green frog that were morbid provided additional evidence of disease occurring at my 

wetlands.  Three American toads were opportunistically captured during field 

investigations because of observed lesions: two were caught at cattle-access wetlands and 

one at a non-access wetland.  A wide variety of bacteria were cultured from the American 
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toad with facial ecchymosis that was captured at a cattle-access wetland.  Interestingly, 

none of the bacteria (Chryseobacterium indolgenes and Pseudomonas spp.) cultured from 

the liver and kidney of this individual were cultured from facial lesions.  Thus, these 

internally cultured bacteria may have represented a separate and perhaps systemic 

infection, and suggest that this individual may have been immunologically stressed.  The 

bacterium Chryseobacterium meningosepticum was cultured from the facial lesion and 

has the potential to be pathogenic in immunocompromised individuals (Mauel et al. 

2002).  It is also a human pathogen, reported most often in neonates, and targets the brain 

resulting in meningitis (Bloch et al. 1997).  Fungal cultures from each lesion also 

revealed Penicillium spp. and Trichoderma spp.  Both of these fungi are ubiquitous in the 

environment and can be pathogenic in severely immunocompromised humans and 

animals (Rippon 1988).  Their role in amphibian disease is not well documented, though 

a toxin (OTA) produced by Penicillium has been reported to cause cranial malformations 

and reduced embryonic growth in Xenopus laevis (O’Brian et al. 2005).  Penicillium also 

has been implicated in amphibian hepatitis (Griner 1983).  Numerous cestode-containing 

cysts were identified in the walls of the intestines and stomach as well as the liver, heart 

and mesentery of this American toad.  Many cestode species, such as Mesocestodes spp., 

use amphibians as intermediate hosts, and their larvae can encyst in various tissues 

(Goater and Goater 2001).  Adult cestodes have protrusions that allow them to attach to 

the walls of the small intestine, potentially penetrating the gastrointestinal lining (Goater 

and Goater 2001).  These lesions at the cestode attachment sites may allow opportunistic 

bacteria and fungi to enter the circulatory system resulting in septicemia (Wright and 

Whittaker 2001).  Nonetheless, no histopathological changes were associated with the 
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numerous cestode-containing cysts in this individual, thus it is unlikely these parasites 

were significantly compromising the individual.  However, if the immunocompetence 

level of this individual dropped, it could have led to bacterial and fungal infection, 

especially considering the species isolated from the external lesions. 

The other American toad from a cattle-access wetland was collected because of a 

midshaft swelling on the right rear limb, which was found to be a fluid (serous) filled 

structure.  This individual also had inflammatory reactions in the kidney, liver, 

gastrointestinal tract and heart, possibly due to cestode-containing cysts present in these 

tissues.  Additionally, two potentially pathogenic bacteria, Chyseobacterium indologenes 

and Staphylococcus epidermidis were isolated from the leg lesion, though no 

inflammatory cells were found.  Other than the leg swelling, this individual was alert 

prior to euthanizing and had no other gross signs of illness.  It is possible though that the 

aforementioned histopathological changes were significant enough to compromise the 

individual, and perhaps allow future parasite and bacterial invasion if it had not been 

collected for my study. 

The final opportunistically collected American toad was collected from a non-

access wetland, because it had multiple dermal lesions.  The bacterium Pseudomonas was 

cultured from the kidney.  Fungal isolates from the intestines and abdominal swab 

revealed Candida albicans and C. guilliermondii, respectively.  Candida spp. are 

opportunistic pathogens that are part of the normal bacterial fauna of many animals 

(Rippon 1988).  The fungus C. guilliermondii has been reported previously as a potential 

pathogen in anurans (Mok and de Carvalho 1985).  Infections by C. albicans are typically 

found in the alimentary or respiratory tract, while C. gulliermondii is typically associated 
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with endocarditis (Rippon 1988).  Relative differential counts of blood cells found in this 

individual were suggestive of an acute immune-mediated process (i.e., proportion of 

heterophils was low, and basophils were high compared to normal proportions for 

American toads, Forbes et al. 2006).  Changes in blood cell counts could be explained by 

reallocation of cells to fight infection or the release of corticosterone due to stress.  

Basophils are involved in processing surface immunoglobulins and histamine release, and 

are found to increase in response to parasite load and viral infections (Jacobson 2007).  

Elevated basophil counts in heart blood also may suggest a cardiac infection, because 

basophils are recruited to sites of infection (Guyton and Hall, 2000).  Evidence of 

endocarditis was not seen during histological examination of this individual, but early 

(peracute) recruitment may have been initiated if the cultured C. gulliermondii became 

systemic and targeted the heart.  Heterophils, being the first line of immune defense, may 

have been low if the toad was fighting infection for some time or if the infection was 

becoming systemic.  Additionally, release of corticosterone reduces inflammation by 

decreasing the allocation of white blood cells, thus potentially decreasing the percent of 

heterophils.  Although if this explanation were true, I should have seen a decrease in 

eosinophils and lymphocytes (Guyton and Hall 2000), which I did not.  Regardless, these 

findings suggest that the individual was stressed, particularly because fungal infections 

are usually secondary to stress or disease (Fox et al. 2002). 

One southern leopard frog with swellings on the right rear limb was 

opportunistically collected from a cattle-access wetland.  Similar to the second American 

toad mentioned above, these swellings contained serous fluid with no inflammatory cell 

infiltrates, which suggested an acute traumatic event.  A potentially pathogenic 
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bacterium, Citrobacter freundii was isolated from the intestines of the animal.  However, 

given this bacterium is part of the normal gut flora of amphibians (Gibbs et al. 1966) and 

infections were not found in other organs or the cysts, bacteria cultured from the 

intestines were likely commensals.  Nematodes and flagellated protozoans were found in 

the feces of this individual, and were likely incidental findings or may be suggestive of 

low-grade immune suppression.  

The final opportunistically collected individual was a green frog metamorph at a 

cattle-access wetland, because it had immobile joints on the right rear limb.  The 

bacterium Aeromonas hydrophila was isolated from the leg, and may have been an 

opportunistic invader.  However, neither inflammatory cells nor bacteria were found 

during histological examination.   Histological examination of affected joints did not 

reveal obvious anatomical changes that would explain the gross finding.  However, a 

potentially significant finding was the presence of myositis in the skeletal muscle in the 

retroperitoneal area of the affected leg.  This inflammatory reaction was suggestive of 

parasites, although none were discernible.  If parasites were present during limb 

development, it could explain the gross malformation.  Other findings included 

granulomatus inflammation at the base of the lungs (suggestive of parasite presence) and 

a nematode within the mesentery.   

Malformed individuals.—I also collected 36 malformed anurans, identified 

malformation types, compared malformations prevalence between cattle land uses, and 

determined whether malformations were caused by the trematode Ribeiroia.  No 

differences were detected in malformation prevalence due to trematodes between cattle 

land uses.  Malformation rates (2%) were typical of normal amphibian populations (Tyler 
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1998), and several malformation types were consistent with trematode presence (Sessions 

and Ruth 1990, Johnson et al. 2002, Johnson and Chase 2004), such as amelia, ectromelia 

and polymelia.  My results do not provide evidence that cattle increase prevalence of 

Ribeiroia or other trematodes that cause malformations, such as Manodistomum and 

Telochis spp. (Kiesecker 2002, Sutherland 2005).  This is contradictory to previous 

studies (e.g., Johnson and Chase 2004, Johnson et al 2001.), which suggest that 

eutrophied conditions associated with cattle ponds facilitate Ribeiroia infections.  I offer 

some explanations below. 

In order for Ribeiroia infection to occur, all three hosts must co-occur.  I observed 

four waterbirds known to be definitive hosts (i.e., the primary host) of Ribeiroia at my 

study wetlands, but there was no noticeable trend in relative abundance of all species 

combined between cattle land uses.  In a concurrent study, Schmutzer (2007) found that 

abundance of Planorbella snails was greater in cattle-access wetlands in only one month, 

which was likely was due to more eutrophied conditions (Chase 2003, Johnson and Chase 

2004).  Green frog tadpoles (i.e., second intermediate host) were present in cattle-access 

wetlands, but around 3X more abundant in non-access wetlands (Schmutzer 2007).  In 

addition, overall relative abundance of tadpoles (species combined) was around 3X 

greater in non-access wetlands.  Infection by Ribeiroia likely increases as relative 

abundance of all hosts increases (Johnson et al. 2004), which was not the case at cattle-

access wetlands.  Infection of tadpoles by Ribeiroia also is positively correlated with 

cercariae density in the water (Johnson et al. 2002), which is a function of the number of 

primary and secondary hosts.  Although I did not measure density of Ribeiroia cercariae, 

I found no evidence to suggest they would have been elevated because all three hosts 
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either showed no trend in abundance between cattle land uses or there were fewer 

individuals in cattle-access wetlands.      

Another possibility is that Ribeiroia-infected individuals experienced mortality as 

tadpoles or during metamorphosis, so that true trends in postmetamorphic prevalence 

were not documented.  High mortality rates of tadpoles infected with Ribeiroia have been 

documented during the pre-limb bud stage (Gosner 24–25, Schotthoefer et al. 2003).  

Also, it is hypothesized that predation rates of malformed metamorphs are higher than for 

normal individuals (Johnson and Chase 2004), which may have been greater at cattle-

access wetlands because of less vegetation for escape cover.  However, in two years of 

research, I rarely observed malformed frogs near my wetlands.  Therefore, I believe that 

either mortality is occurring prior to metamorphosis, cercariae are low, or the cattle land-

use hypothesis for Ribeiroia is false.  Indeed, more research is needed to discern 

mechanisms driving trends in Ribeiroia infection.   

Abnormalities due to injury and one malformation type, brachydactyly, were 

more prevalent at cattle-access wetlands.  Injuries may have been increased at cattle-

access wetlands due to trampling by cattle.  Brachydactyly (shortened toes) may have 

been greater at cattle-access wetlands due to lower water quality (Schmutzer 2007).  

Some studies have suggested that poor water quality reduces growth and may be an 

underlying mechanism of amphibian malformations (Fort et al. 1999a, b; Jofre and 

Karasov 1999, Sparling 2000; but also see Lannoo et al. 2003).  However, if water 

quality was the cause, it is unclear why this particular malformation type (brachydactyly) 

would have been only been observed in one limb of the individual and why it would have 

been the only malformation type to show a significant difference in prevalence between 
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land uses.  Potentially, a chemical or combination of chemicals found in cattle-access 

wetlands may cause developmental problems in the feet of amphibians.  Alternatively, 

my sample size (n = 15 access and n = 21 non-access) may not have been sufficient to 

detect statistical differences for other malformation types or were sufficient to obtain 

unbiased estimates.  I recommend additional research exploring the roles environmental 

stressors, especially water quality, in causing the different types of malformations.  

Pathological conclusions.—Pathological examinations revealed that amphibians 

at these wetlands are subjected to numerous potential pathogens and stressors in the 

environment that may be influencing infection rates.  However, cattle do not appear to be 

increasing the prevalence of the pathogens that I documented in postmetamorphic 

individuals.  Nonetheless, pathogens may still contribute to shaping the amphibian 

communities at cattle-access and non-access wetlands by influencing survival of 

individuals, particularly as they go through metamorphosis, thus influencing 

postmetamorphic recruitment. 

 

Conclusions and Conservation Recommendations 

My results suggest that the potential effects of cattle in wetlands on amphibians 

are species-specific, which appeared to alter the structure of the resident amphibian 

community at my study wetlands.  In general, American toads may be positively 

influenced by environmental changes associated with cattle grazing at wetlands, while 

green frogs (and perhaps other ranids or less common species) may be negatively 

impacted by cattle in wetlands.  Similar trends may exist elsewhere in Tennessee.  

Environmental co-factors of cattle land use responsible for these postmetamorphic trends 
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are unknown, but probably include a combination of reduced shoreline vegetation and 

lower water quality at cattle-access wetlands.  Differences in shoreline vegetation may 

have served as proximate cues for habitat selection or increased mortality of ranids 

through accelerated water loss or increased predation.  Differences in species-specific 

tolerances to water quality also may have influenced ranid larval survival, and thus 

postmetamorphic abundance.  In general, controlled studies (e.g., Jofre and Karasov 

1999) suggest that toad tadpoles are influenced less by lower water quality, perhaps 

contributing to their greater abundance at cattle-access wetlands.  In addition, Gray et al. 

(2007a) documented that green frog tadpoles inhabiting cattle-access wetlands were 4X 

more likely to be infected with Frog Virus 3 (FV3) than in non-access wetlands.  Thus, 

FV3 infection may have been an important driver of green frog postmetamorphic 

abundance.  Pathological findings in my study revealed that amphibians at these wetlands 

are subjected to numerous potential pathogens, and that stressors in the environment may 

be influencing infection rates.  However, cattle did not appear to increase prevalence of 

the pathogens that I documented in postmetamorphic individuals.  Nonetheless, 

pathogens may still contribute to shaping the amphibian communities by influencing 

survival of individuals, particularly at tadpole stages and as they go through 

metamorphosis, thus influencing postmetamorphic populations in Tennessee wetlands.  

To reduce the impact of cattle on amphibian populations in Tennessee, I 

recommend that water tanks be supplied for cattle, and ideally that cattle be excluded 

from wetlands and from adjacent terrestrial habitat.  Terrestrial buffers of 30 m generally 

are considered sufficient to protect water resources (Houlahan and Findlay 2004).  

However, during the non-breeding season, most adult amphibians are found 30 – 200 m 
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from wetlands (Rittenhouse and Semlitsch 2007).  Previous studies recommend buffers 

160 – 200 m to conserve amphibians (Semlitsch 1998, Regosin et al. 2005).  Partially 

fencing cattle from portions of a wetland or limiting cattle density in space or time also 

may minimize impacts of amphibians and be a viable conservation alternative.  Partial 

exclusion of cattle from wetlands has been shown to have positive impacts on red-legged 

frog (Rana aurora) and tiger salamander (Ambystoma tigrinum) populations in the 

western United States (Contra Costa Water District 2005).  Future research directions 

need to quantify the benefits of partial exclosures, regulating cattle density, and rotational 

grazing on amphibians.   

One study that I recommend is a controlled grazing intensity experiment.  

Seemingly, there exists a cattle density where the negative impacts of cattle are 

minimized.  Jansen and Healy (2002) suggested that amphibian abundance and species 

richness increased with decreasing grazing intensity.  Mean number of cattle per ha of 

wetland was 86 at my study site.  Therefore, a hypothetical threshold for negative cattle 

impacts exists somewhere between 0 and 86 head / ha.  I recommend a field experiment 

with four grazing intensity treatments (0, 25, 50, and 100 head / ha) replicated at four 

wetlands per treatment.  Variables measured in Schmutzer (2007) and my study should be 

measured in addition to larval and postmetamorphic survival in mesocosm enclosures 

(e.g., Rothermel 2004, Todd and Rothermel 2006).  If possible, postmetamorphic 

population density should be estimated using Program Mark and a Jolly-Seber model to 

estimate population size (Williams et al. 2001).  I was unable to estimate population size 

in my study (only relative abundance), because recapture rate was 4.2 – 4.8% among 

wetlands.  It is recommended that recapture rates exceed 60% for precise Jolly-Seber 
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estimates (Sandercock 2006).  This could be accomplished by increasing sampling 

intensity and marking all captured individuals uniquely.  Results from such a study could 

be used directly in conservation incentive programs for cattle farmers.  Additional studies 

that I recommend include testing buffer size widths, effectiveness of partial cattle 

exclosures and rotational grazing, quantifying the impacts of cattle land use on amphibian 

home-range and dispersal movements, and lab experiments on species-specific tolerances 

to water quality and how water quality interacts with pathogen infectivity.  Such studies 

are necessary to better understand the impacts of anthropogenic stressors on amphibians, 

and to formulate conservation recommendations that counteract amphibian declines. 

Finally, for conservation recommendations to be effective, farmers should be 

made aware of cost-share opportunities that are available to them through USDA Natural 

Resources Conservation Service (NRCS) programs.  Currently, the NRCS 

Environmental Quality Incentives Program (EQIP) and the Wildlife Habitat Incentives 

Program (WHIP) provide up to 75% cost-share for conservation projects that reduce 

non-point source pollution and soil erosion in agricultural watersheds, and create quality 

wildlife habitat (NRCS 2007).  Cattle farmers also should be educated on the potential 

economic benefits of excluding cattle from wetlands.  Allowing cattle access in wetlands 

can reduce water quality by increasing nutrient inputs through fecal deposition (Trimble 

and Mendel 1995, Hooda et al. 2000, Schmutzer 2007).  Poor water quality can lead to a 

loss in live weight of beef cattle and a reduction in milk production in dairy cows 

(Willms 2002, Looper and Waldner 2002).  Fencing cattle from wetlands also may be 

benefit herd health (e.g. Listeria spp., Botzler et al. 1973; Salmonella spp., Daniels et al. 

2003; Leptospira spp., Shotts 1981; Mycobacterium spp., Beard et al. 2001).  Pathogens 
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can be easily transmitted among herd members in water via the fecal-oral route (Theon 

and Johnson 1970, Shotts 1981).  Callaway et al. (2005) estimated that Salmonella spp. 

prevalence was 27 – 31% in U.S. dairy herds.  In cattle, this pathogen can cause 

diarrhea, dehydration, abortion, and death if left untreated (Glaser et al. 1994, NADIS 

2002).  The pathogen Mycobacterium paratuberculosis also is a concern to cattle 

farmers, because it can cause Johne’s disease (Olsen et al. 2002).  Cows with Johne’s 

disease may produce 700 kg less milk per cow than uninfected cows (Ott et al. 1999).  

Farmers with herds that test positive for M. paratuberculosis also have reported lower 

cull-cow revenues and greater cow mortality rates than farmers with herds that were not 

infected (Ott et. al 1999).  Overall, these economic losses due to Johne’s disease have 

been estimated to cost the United States $200 – $250 million annually (Ott et. al 1999).  

Many cattle pathogens also can survive and reproduce for long durations outside the 

host.  For example, Salmonella spp. can survive in pond water and pasture soil for 

around 120 days, and it can remain viable in cattle manure for up to three weeks (Morse 

and Duncan 1974, Himathongkham 1999).  Thus, if an infected herd member defecates 

in a communal water source, the pathogen may be maintained in the aquatic system and 

facilitate infection of other herd members, even after potential treatment of the infected 

individual with antibiotics.  Maintenance of cattle pathogens in wetlands also may occur 

in wildlife reservoirs (Botzler et al. 1973, Morse and Duncan 1974, Beard et al. 2001).  

For example, Salmonella spp., Mycobacterium spp., and Escherichia. coli have been 

isolated from the intestines of tadpoles (Hird et al. 1983, Monzon et al. 1995, Hoop 

1997).  Although these studies did not determine whether the bacterial isolates were 

pathogenic to cattle, the possibility exists that tadpoles as well as other wildlife may 
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serve as spill-over reservoirs of cattle and human pathogens (Gray et al. 2007b).  Thus, I 

suggest that fencing cattle from wetlands also is a prudent agricultural practice that 

likely will reduce pathogen transmission among herd members and between wildlife and 

cattle.   

Cattle also are primary reservoirs of zoonotic pathogens that cause human illness. 

Zoonotic pathogens can be transmitted from cattle to humans via food products or in 

contaminated water.  Mead et al. (1999) estimated there are 76 million cases of foodborne 

illnesses in the United States every year, resulting in 5,000 deaths annually.  Listeriosis 

and salmonellosis are some of the most common zoonotic diseases associated with cattle-

human interactions (Lynch 2006).  It has been estimated that illnesses due to 

salmonellosis cost the U.S. economy $2.4 billion annually (Mead et al. 1999), and many 

of the outbreaks have been linked to consumption of cattle food products (Hedberg et al. 

1992).  Cattle farms also are hotspots for Listeria monocytogenes, a foodborne pathogen 

associated with meningitis in humans (Gray et al. 2004).  In addition to foodborne risks, 

livestock waste can contaminate ground water and surface waters, which can infect 

drinking water and water sources used for recreation.  For example, runoff from a cattle 

farm was suspected as the source of Cryptosporidium that contaminated drinking water in 

Milwaukee, Wisconsin (EPA 2001).  This outbreak caused 403,000 cases of 

cryptosporidiosis and 50 human deaths (EPA 2001).  Allowing cattle to access wetlands 

also can contaminate irrigation water, which could result in zoonotic pathogens being 

transmitted to humans on vegetable products.  In fall 2006, an E. coli O157:H7 outbreak 

in the United States was connected to spinach, probably contaminated with irrigation 

water containing infected cattle feces (CDC 2006).   Further, Gray et al. (2007b) provided 
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lab evidence that American bullfrog metamorphs are suitable hosts of E. coli O157:H7.  

It is possible that if an infected herd member released this or other zoonotic pathogens 

into a wetland that they could be maintained by resident wildlife, allowing re-infection of 

cattle.  Thus, fencing cattle from wetlands would reduce the likelihood of contaminating 

water or infecting wildlife hosts in wetlands with zoonotic pathogens by preventing direct 

deposition of infected feces.  Feces contaminated runoff into wetlands also may be 

reduced when cattle are excluded, as shoreline vegetation establishes and serves as a 

buffer (EPA 2001, 2006).   
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CHAPTER III 

RELATIONSHIPS BETWEEN AGRICULTURAL LANDSCAPE 

CHARACTERISTICS AND AMPHIBIAN COMMUNITY STRUCTURE 

 
Introduction 

The most widespread and influential of all possible anthropogenic stressors on 

amphibians is the loss and alteration of aquatic and terrestrial habitat.  Amphibian habitat 

is destroyed or degraded for a variety of human land uses including agriculture, 

silviculture and urbanization (Collins and Storfer 2003).  Anthropogenic land uses can 

increase the complexity of the landscape and distance between habitat patches (Gibbs 

1993, Gray et al. 2004b).  This may reduce the probability of successful dispersal by 

creating a greater number of edges and potential barriers to movement, such as roads or 

disturbed land (Gibbs 1998, Hecnar and M’Closkey 1998, Rothermel and Semlitsch 

2002).  In most temperate landscapes, wetlands represent isolated patches of amphibian 

habitat separated by inhospitable upland terrain.  Wetland isolation influences the 

tendency of amphibians to undergo colonization or extinction events (Skelly et al. 1999).  

Populations at isolated wetlands usually have lower rates of immigration than emigration, 

and have a greater probability of extinction (Laan and Verboom 1990).   

Wetlands surrounded by agriculture have been considered to be more isolated 

than those in undisturbed landscapes (Vos and Chardon 1998).  Agricultural cultivation 

decreases suitable terrestrial habitat for amphibians by reducing natural vegetative cover, 

increasing exposure to the sun, and creating disturbed soils (Mazerolle and Desrochers 

2005).  Undisturbed terrestrial habitat is important for amphibians, because these sites are 
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used for foraging, overwintering and estivation (Semlitsch and Bodie 2003).  Removal or 

reduction in natural vegetative cover can decrease food resources and increase the 

probability of desiccation and predation.  This may explain why amphibians typically 

avoid agriculturally cultivated areas (Mazerolle and Desrochers 2005).  Thus, agricultural 

fields adjacent to wetlands may function as barriers to movement (Gibbs 1998, Gray et al. 

2004a).  

Roads and urbanization also may decrease connectivity of spatially disjunct 

amphibian populations (Gibbs 1998).  Roads may deflect movement (Marsh et al. 2005), 

reduce terrestrial habitat (Semlitsch et al. 2007), and be a direct cause of mortality 

(Orlowski 2007).  Thus, roads may increase the extinction probability for local amphibian 

populations (Vos and Chardon 1998).  Similarly, urbanization can decrease amphibian 

habitat and be impermeable to movement (Richter and Azous 1995). 

Spatial isolation may increase the nestedness of certain amphibian species.  Site 

fidelity of male Túngara frogs (Physalaemus pustulosus) increased with inter-pond 

distance (Marsh et al. 2000).  Kolozsvary and Swihart (1999) found that amphibians 

showed strong nestedness in an agricultural landscape.  Gray et al. (2004a,b) supported 

these findings reporting an increase in abundance of spadefoots in wetlands surrounded 

by geometrically complex cropland landscapes.  They hypothesized that cropland 

landscapes may be perceived by spadefoot toads (Spea multiplicata, S. bombifrons) as 

viscous environments and reflect movement back to their natal wetland (Gray et al. 

2004a).  These studies illustrated that although isolation may decrease species richness 

(MacArthur and Wilson 1967), some species might increase in abundance in isolated 

ponds because emigration is reduced.  On the other hand, other species that depend more 
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on the terrestrial environment to meet life-cycle needs may decrease in abundance if 

terrestrial and aquatic habitats become separated due to human disturbance (Loman 1988, 

Vos and Stumpel 1995). 

  The complexity and physical structure of anthropogenically modified landscapes 

can reduce permeability to amphibians, especially metamorphs (Rothermel and Semlitsch 

2002), although it appears some species are better than others at traversing disturbed 

landscapes (Stevens et al. 2004).  In general, anuran dispersal ability is positively 

correlated with body size and leaping abilities (Taigen and Pough 1981, John-Alder and 

Morin 1990, Beck and Congdon 2000).  Body size also may influence the perception of 

an individual to landscape permeability (Wiens et al. 1997, Gray et al. 2004a).  Other 

factors such as desiccation resistance, temperature tolerance, and seasonal requirements 

for breeding can influence the vulnerability of amphibians to fragmentation (Kolozsvary 

and Swihart 1999).  Traversing a complex landscape can be energetically costly and may 

increase mortality, particularly if the inter-patch landscape matrix is unsuitable 

amphibian habitat (Ims and Yoccoz 1997).  Consequently, inter-patch geometric 

complexity can affect species composition of amphibian communities across a 

fragmented landscape (Gray et al. 2004a).  In forested and prairie landscapes, the 

presence of trees and native grass may increase connectivity between habitat patches and 

help maintain undisturbed amphibian demographics (Laan and Verboom 1990, Waldick 

1997, Gray et al. 2004b).  

In addition to the composition of the inter-patch matrix and the distance between 

amphibian habitats, wetland size also can affect amphibian communities.  Vos and 

Chardon (1998) reported a positive relationship between pond size and probability of 
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occupancy by anurans.  Wetland size and depth can be important predictors of amphibian 

species richness (Kolozsvary and Swihart 1999).  In general, larger wetlands have greater 

depth stratification, which creates more diverse habitat and increases species richness 

(Laan and Verboom 1990).  On the other hand, small wetlands can be very important in 

maintaining amphibian metapopulations (Semlitsch and Bodie 1998).  Gibbs (1993) 

illustrated that removing small wetlands (<4 ha) in Maine increased inter-wetland 

distance by 67%.  Semlitsch and Bodie (1998) reported that removing small wetlands (< 

4 ha) in South Carolina increased inter-wetland distance by 136%, and that small 

wetlands can function as source populations (Pulliam 1988).     

Several researchers have reported that landscapes dominated by agricultural 

cultivation can influence amphibian communities (Knutson et al. 1999; Kolozsvary and 

Swihart 1999; Gray et al. 2004a,b; Knutson et al. 2004).  However, no studies have 

examined the relationship between landscape structure and amphibian community 

composition in agricultural landscapes dominated by cattle grazing.  At the University of 

Tennessee Plateau Research and Education Center (PREC), approximately 24% of the 

landscape is pasture, with permanent wetlands interspersed.  In Chapter II, I provided 

evidence that cattle land use can impact amphibian community structure; however, this 

effect may interact with landscape features.  Thus, my objective for Chapter III was to 

quantify geo-spatial metrics of landscape structure and composition, and relate these to 

amphibian community composition using relative abundance estimates from Chapter II 

for my most common species.  Based on previous studies, I hypothesized that geographic 

isolation would negatively influence amphibian abundance (Loman 1988, Laan and 

Verboom 1990, Vos and Stumpel 1995, Lehtinen et al. 1999), geometric complexity of 
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the landscape would be positively related to amphibian abundance due to hindered 

movement and increasing population nestedness (Knutson et al. 1999, Kolozsvary and 

Swihart 1999), and possible landscape effects would be species dependent (Gray et al. 

2004b).  Understanding the relationships of agricultural landscape structure on amphibian 

communities is important when developing conservation strategies for amphibians 

(Marsh and Trenham 2001, Semlitsch and Bodie 2003). 

 

Methods 

Amphibian abundance was quantified in pitfall traps at eight wetlands on the 

PREC from March – August 2005 and 2006.  Sampling procedures followed those 

outlined in Chapter II.  Mean species-specific abundance was calculated for each wetland 

over the two years for the following species: American toad (Bufo americanus), Fowler’s 

toad (B. fowleri), American bullfrog (Rana catesbeiana), green frog (R. clamitans), 

pickerel frog (R. palustris), and southern leopard frog (R. sphenocephala).  American 

toad and Fowler’s toad abundance were combined under Bufo species abundance, 

because of their similar life history traits and morphology (Dodd 2004).  I used the 

aforementioned species because they were the most abundant at my study wetlands 

(Chapter II).  Infrequently caught species were not used, because the multivariate 

techniques that I used for analyses are sensitive to zeroes in the response matrix 

(discussed below).   

Landscape structure and composition was quantified using remote sensing 

techniques, the geographic information system, and spatial analysis software.  The 2004 

digital orthophoto quadrangle (DOQQ) of Cumberland County, Tennessee, that contained 
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the PREC was downloaded from the Tennessee Spatial Data Server 

(http://www.tngis.org/).  I imported this coverage into ESRI® ArcGIS 9.1, and 

designated landscapes for each study wetland.  Due to the differences in habitat 

requirements and dispersal ability of my species, I designated landscapes at two different 

scales: 1 km and 0.5 km around each wetland (Vos and Chardon 1998, Lehtinen et al. 

1999).  These landscape sizes are based on biological criteria.  Semlitsch and Bodie 

(2003) and Rittenhouse and Semlitsch (2007) provided evidence that the majority of 

temperate amphibian species use terrestrial habitat within 500 m of wetland breeding 

sites.  Others have used 1-km scale (e.g., Knutson et al. 1999, Houlahan and Findlay 

2003), because this landscape size is near the maximum dispersal distance of many 

amphibian species (Sinsch 1990, Semlitsch and Bodie 2003, Rittenhouse and Semlitsch 

2007), hence may be a better representation of landscape influences on interdemic 

movement.  I digitized the following land cover types for all my landscapes: wetland, 

stream, forest, cattle pasture, cropland, mowed grass not being grazed, gravel road, paved 

road used for primarily for local residential traffic, two-lane highway, parking lot, and 

building.  All ArcGIS® shapefiles associated with cover types were merged together and 

converted to a raster image (Figure 7).  Finally, each landscape within the extent of each 

buffer (1 km and 0.5 km) was extracted by mask to create landscape plots for spatial 

analyses. 

Fragstats® software was used to quantify landscape structure and composition at 

three levels: patch, aggregate properties of the patches (class), and the landscape 

(McGarigal and Marks 1995).  Spatial metrics calculated at the patch level were wetland 

shape index (SI), wetland area (WA), and nearest-neighbor distance from each study 
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wetland to surrounding wetlands (WNN).  At the class level, calculated metrics were 

mean nearest-neighbor distance from all wetlands in a landscape to surrounding wetlands 

(MNN), percent land cover of wetlands (PLC), number of wetlands (NW), and an 

interspersion-juxtaposition index of wetlands (IJI).  The patch and class level metrics 

were used to quantify isolation and spatial positioning (McGarigal and Marks 1995).  At 

the landscape level, metrics were edge density (ED, m edge/ha), mean number of edges 

to cross from each study wetland to other wetlands in the landscape (ME), landscape 

shape index (LSI), patch richness (PR), Shannon evenness index of land cover types 

(SEI), and Shannon diversity index of land cover types (SDI, McGarigal and Marks 

1995).  Each of the landscape level metrics was used to measure landscape complexity 

(McGarigal and Marks 1995).  Unity was assigned to cover types and permeability of 

edges, because the relative vagility among my species was unknown (Compton et al. 

2007).  

I used canonical correspondence analyses (CCA) to determine the relationship 

between landscape structure and amphibian community composition (McGarigal et al. 

2002, Gray et al. 2004b).  The response matrix (8 × 6) was mean daily abundance of each 

species over two years (i.e., 6 columns) for each wetland (i.e., 8 rows).  I natural-log 

transformed all mean abundances, because CCA is sensitive to outliers and bimodally 

distributed data (ter Braak 1995).  I used Program CANOCO® (version 4.5) to perform 

CCA analyses (Lepŝ and Ŝmilauer 2003).  Global Monte Carlo permutation tests were 

used to determine if a significant relationship (α = 0.10 existed between landscape 

metrics and species composition (ter Braak 1995).  I created a dimensionless species-

landscape metric biplot (i.e., ordination) for each landscape size to examine the 
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relationship between species abundance and landscape metrics.  The biplot was 

composed of triangles and arrows representing species abundances and landscape 

metrics, respectively.  The length and direction of each arrow corresponded to the 

eigenvalue and eigenvector, respectively, for the particular landscape metric.  Metrics 

with larger eigenvalues (hence longer arrow lengths) were associated more strongly with 

amphibian abundance.  Also, species that were more closely positioned to a landscape-

metric arrow were more strongly correlated with it.  To further illustrate the relationships 

among landscape metrics and species-specific amphibian abundance, I also created an 

inferred ranking diagram.  This diagram was created by extending the blunt end of each 

eigenvector through the origin of the biplot and drawing orthogonal lines from each 

species to the eigenvector.  Species closer to the arrowhead and blunt end of the 

eigenvector were more positively and negatively correlated, respectively, with the 

landscape metric.  Species positions along the inferred ranking also can be interpreted as 

positive and negative associations (ter Braak 1995).   

I also was interested in constructing multiple linear regression models to use as 

conservation tools for predicting univariate species-specific relative abundance using 

significant landscape metrics.  The response variable was mean abundance for a species 

(i.e., one column from the multivariate response matrix), and explanatory variables 

included all aforementioned landscape metrics.  I followed the identical protocol for 

regression analyses outlined in Chapter II.  All statistical analyses were performed using 

the SAS® system (Littell et al. 1991, Stokes et al. 2003).  
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Results 

Multivariate analyses using global Monte Carlo permutation tests based on 499 

permutations revealed that 92% of variation in amphibian community composition was 

explained by landscape structure and complexity for both landscape sizes.  For 1-km 

landscapes, WNN, ED, and PLC explained significant variation in amphibian community 

composition (F ≥ 3.35, P ≤ 0.04 Figure 8a).  For the 0.5-km landscape, WNN, ED, and 

MNN explained significant variation in amphibian community composition (F ≥ 2.42, P 

≤ 0.07, Figure 9a).  Other variables were retained in the final multivariate model for both 

landscape sizes, but they did not explain significant variation (F ≤ 5.66, P ≥ 0.11, Figures 

8a and 9a).    

Orthogonal inferred ranking of species along significant eigenvectors indicated 

that Bufo spp. and southern leopard frogs were positively and negatively associated with 

WNN and ED, respectively, for both landscape scales (Figures 8b and 9b).  Southern 

leopard frogs and Bufo spp. were positively and negatively associated, respectively, with 

PLC in 1-km landscapes.  In 0.5-km landscapes, southern leopard frogs and Bufo spp. 

were negatively and positively associated with MNN, respectively.  Other anurans 

(pickerel frog, American bullfrog and green frog) generally showed negative associations 

with Bufo spp. and southern leopard frogs, hence exhibited opposite relationships with 

landscape metrics (Figures 8b and 9b).   

Multiple linear regression models for the 1-km landscapes explained 59 – 99% of 

the variation in mean amphibian abundance using landscape metrics as predictor 

variables (Table 24).  Approximately 60% and 21% of the variation in Bufo spp. was 

explained by ME and WNN, respectively.  For American bullfrogs, around 65% of the 
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variation in abundance was explained by PLC.  The majority of variation in green frog 

abundance was explained by WNN (61%) and IJI (26%).  Mean nearest neighbor 

distance and PLC explained 61% and 28% of the variation in mean abundance of pickerel 

frogs.  For southern leopard frogs, MNN and WA explained 53% and 22% of the 

variation in mean abundance, respectively (Table 24).   

Final univariate landscape-metric models for 0.5-km landscapes explained 45 – 

99% of the variation in mean amphibian abundance (Table 25).  Fifty-two percent of the 

variation in Bufo abundance was explained by LSI.  Mean number of edges to cross from 

the study wetland to adjacent wetlands and PLC explained 68% and 29% of the variation 

in mean American bullfrog abundance.  Most of the variation in green frog abundance 

was explained by WNN (61%) and PLC (23%).  Approximately 75% of the variation in 

pickerel frog abundance was explained by SEI.  Finally, SEI explained 78% of the 

variation in southern leopard frog abundance of RASP (Table 25).   

 

Discussion 

My results suggest that landscape metrics, representing landscape structure and 

composition, were positively and negatively associated with species-specific amphibian 

abundance.  Multivariate ordinations and Monte Carlo simulation tests for both landscape 

sizes revealed that Bufo spp. and southern leopard frogs were positively associated with 

distance from study wetlands to adjacent wetlands and negatively associated with edge 

density (i.e., meters of edge / ha).  These results suggest that these species inhabited more 

isolated wetlands on my study site, but they were potentially negatively impacted by 

increasing geometric complexity of the landscape.  The opposite trend existed for 
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pickerel frogs, American bullfrogs and green frogs.  Few individuals of these species 

were found at isolated wetlands, while landscape complexity did not seem to negatively 

impact their populations.   

I believe the aforementioned trends are related to specific-specific vagility and 

life history.  American and Fowler’s toads may be influenced less by wetland isolation, 

because they are considered good dispersers partially due to their relatively large body 

size (Conant and Collins 1998), and they are able to tolerate greater water loss than other 

amphibians (Schmid 1965).  Adult American and Fowler’s toads have been reported 

traveling up to 6 and 34 km, respectively (Smith and Green 2005).  Similarly, southern 

leopard frogs are known to travel far distances from breeding sites to forage in terrestrial 

habitats (Martof et al. 1980, Conant and Collins 1998).  Although no studies exist on 

dispersal capability of southern leopard frogs, northern leopard frogs (Rana pipiens) are 

known to travel up to 5.2 km (Dole 1971).  In contrast, the other ranids in my study may 

be less vagile (Raney 1940, Carr and Fahrig 2001).  A study in Missouri indicated that 

American bullfrogs rarely traveled between wetlands, and those that did moved only 0.16 

– 2.8 km (Willis et al. 1956).  Similarly, green frogs have been shown to rarely travel 

more than 1 m from water unless under ideal conditions (e.g., rainy nights, Minton 1972).   

Despite potentially high dispersal capability, movement of Bufo spp. and southern 

leopard frogs may be reflected by edges.  Rothermel and Semlitsch (2002) found that 

forest edges reflected movement of recently metamorphosed American toads.  A similar 

study determined that pasture adjacent to forest may be substantial barrier to dispersing 

American toad metamorphs because of the lack of suitable terrestrial habitat (Rothermel 

2004).  Highly fragmented uplands also may reduce successful toad dispersal given low 
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survival of American toads in clearcuts (Todd and Rothermel 2006).  No studies have 

been performed quantifying the influences of edges on pickerel frog, green frog, and 

American bullfrog movement; however, it is possible that these species are influenced 

less by edges due to more restricted home ranges and lower maximum dispersal distance 

compared to Bufo spp. or southern leopard frogs.  Indeed, this hypothesis needs to be 

tested.   

An alternative explanation for increased abundance of pickerel frogs, American 

bullfrogs and green frogs in more geometrically complex landscapes may be related to 

their life history.  Typically, these species remain relatively close to more permanent 

wetlands to meet their life cycle needs (McAtee 1921, Raney 1940, Oldham 1967, 

Shroeder 1976).  Hence, edges in a landscape may have less impact on these ranids, 

because they are traversed less due to stronger association with permanent wetlands and 

smaller home ranges.  Increased nestedness in geometrically complex landscapes also 

could represent the return of dispersing individuals to breeding sites due to inhospitable 

conditions in the surrounding terrestrial environment (Kolosvary and Swihart 1999, Gray 

et al. 2004a).   

The multivariate ordination and inferred ranking also indicated that mean 

abundance of southern leopard frogs was positively related with increasing wetland area 

in 0.5-km landscapes.  Wetland size also was a significant predictor variable in the final 

univariate model for this species in the 1-km landscapes.  Thus, this species may be 

attracted to larger wetlands.  Larger wetlands are typically deeper and more stratified, 

thus providing more habitat for competing larval amphibian species (Laan and Verboom 

1990).  Larger wetlands may also provide more habitat along shorelines, and reduce 
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inter-and intra-specific competition for breeding territories.  Finally, adult southern 

leopard frogs may use larger wetlands with longer hydroperiods to provide sufficient time 

for their larvae to develop (ca. 3 months).  In contrast, toads were negatively related with 

wetland size, and are known to use shallow, temporary wetlands as breeding habitat 

(Conant and Collins 1998).  Use of smaller, wetlands may allow toads to exploit habitats 

not used by longer developing ranids given their larvae can complete development in <1 

month.  Smaller wetlands also may have poorer water quality, especially in agricultural 

landscapes where nutrients and contaminants become concentrated.  As discussed in 

Chapter II, toads appear to tolerate poorer water quality than other species (Jofre and 

Karasov 1999).  

At the 0.5-km scale, Bufo spp. were positively associated with mean nearest 

neighbor distance among all wetlands in a landscape, indicating that as distance between 

wetlands increased, their abundance increased.  This provides further evidence that Bufo 

spp. may be less impacted by wetland isolation than other species.  Interestingly, relative 

abundance of southern leopard frogs was negatively related with this variable.  This result 

is opposite of the 1-km landscape, which suggested positive associations for this species 

with increasing inter-wetland distance.  This scale dependency raises question about the 

relationship between wetland isolation and southern leopard frog abundance.  It may 

suggest that southern leopard frogs benefit from closely juxtaposed wetlands for short 

distance migratory movements (<500 m), but also are able to reach isolated wetlands 

(e.g., >1 km) and maintain viable populations.   

Significant variables in univariate prediction models generally corresponded with 

multivariate ordinations.  In general, Bufo spp. and southern leopard frogs were positively 
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and negatively related to predictor variables that represented wetland isolation and inter-

wetland geometric complexity, respectively.  The other amphibian species generally had 

opposite relationships with these variables.  I did not interpret each significant variable 

directly, because the intent of these models was a conservation tool (discussed later).  In 

addition, univariate models ignore interdependencies among species in a community.  

Thus, the relationships observed in univariate models usually are less realistic than those 

observed in multivariate ordinations (McGarigal et al. 2002).     

An additional observation that can be made from the multivariate ordinations and 

inferred rankings is the general negative relationship between Bufo and southern leopard 

frogs and other anuran species.  This may be related to relative competitive ability 

between these groups of species as well as the possible negative impact of predation by 

ranids.  For example, the small body size of bufonid species larvae and metamorphs may 

prevent them from competing as effectively with ranids in the aquatic and terrestrial 

environment.  In my study, recently emerged Bufo metamorphs were, on average, 15.13 

mm long and 1.6 g, while green frog and bullfrog metamorphs were at least double in 

size (Chapter II).  Larger body sizes have been associated with an increased ability to 

acquire food resources (Newman 1999), thus ranids may negatively impact 

postmetamorphic Bufo abundance by outcompeting them for food resources.  This has 

not been tested in postmetamorphs, but has been shown in larval ranid and bufonids 

(Alford 1989a).  Although postmetamorphic bullfrogs are known to eat smaller 

amphibians, it is believed they do not predate on postmetamorphic toads (Tucker and 

Sullivan 1975).  However, substantial ranid predation on toad tadpoles has been 

documented in larval studies (Petranka et al. 1994).  
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Conservation Recommendations and Future Research 

My prediction models can be used to guide management and conservation 

strategies to improve existing agricultural landscapes for amphibians or to predict the 

impact of planned agricultural modifications on amphibians.  My CCA results and 

multivariate ordinations suggested that landscape characteristics up to 1 km from 

amphibian breeding sites potentially could impact amphibian community structure.  

However, landscape influences appear to be species-specific.  For species present at my 

wetlands, bufonids and ranids appeared to be positively and negatively associated with 

wetland isolation, respectively.  The same respective associations existed for inter-

wetland geometric complexity.  Thus, amphibian conservation plans should consider 

landscape characteristics and be cognizant of species-specific dependencies.  For 

example, I documented negative associations of ranids with wetland isolation.  Although 

the ranids in my study are common, if conservation for a similar species of concern (e.g., 

Rana capito) was an interest, conservation efforts could focus on increasing wetland 

connectivity through strategies, such as restoration of riparian and upland corridors or 

creation of wetlands between existing breeding sites.   

Predictions in amphibian response to land-use changes for a particular landscape 

can be done by: (1) creating an ESRI® ArcGIS coverage for cover types outlined in my 

methods, (2) calculating significant metrics in species-specific models using Fragstats, 

(3) making abundance predictions by solving the species-specific models in Tables 24 

and 25 given calculated landscape-metric values, (4) creating a new coverage with the 

proposed land-use change, and (5) repeating steps 2 and 3.  The predicted percent change 

in species-specific abundance can be calculated as the quotient of predictions before and 
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after the proposed land-use change.  If the interest is to determine the potential impacts of 

the land-use change on relative abundance due to short-distance migratory movements, I 

recommend using models associated with the 0.5-km analyses.  If the interest is to 

determine potential impacts on amphibian abundance due to long-distance dispersal 

movements, I recommend using the models associated with the 1-km analyses. 

I recommend that future studies test the usefulness of my landscape models in 

predicting relative abundance of amphibians using manipulative experiments.  This could 

be done by estimating species-specific relative abundance following methods in Chapter 

II, and comparing predictions before and after a land-use change.  In addition, I suggest 

that recommendations provided by Semlitsch and Bodie (2003) and others (e.g., 

Rittenhouse and Semlitsch 2007) for buffer size widths around wetlands be tested.   

Conservation recommendations from these studies are based on home-range movements 

of various amphibian species.  In general, they recommend buffer widths ranging from 30 

– 500 m.  A replicated experiment comparing larval and postmetamorphic amphibian 

abundance for five buffer-size treatments (0, 30, 100, 300, 500 m) would be useful.  I 

also recommend additional studies on understanding the impacts of cover types and edges 

on juvenile and adult amphibian movements.  Gray (2002) recommended landscape-scale 

experiments similar to those performed by With (1994) and others (e.g., McIntyre 2000) 

to examine the effects of landscape structure and configuration on amphibian movements.  

In addition, studies that displace individuals and examine movements following release 

(e.g., Marsh et al. 2005) would be useful.  Relative differences in movement patterns 

(represented as probabilities) associated with different cover types and edges can be used 

as permeability estimates, which can be incorporated into landscape analyses in Fragstats 
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or other special analysis programs (e.g., Ramas® GIS, Akcakaya 1994) to perform least-

cost path analyses.  Such estimates of permeability also can be use to assess the 

functional connectivity of wetlands at local and regional scales, and the connectivity of 

wetlands to upland habitat using resistant-kernel estimator models (Compton et al. 2007).   

Lastly, understanding factors that contribute to postmetamorphic survival in the 

terrestrial environment is critical.  Enclosure experiments (e.g., Rothermel 2004) are one 

possible approach to determine micro-habitat characteristics (e.g., vegetation structure, 

invertebrate abundance) positively associated with survival.  The relative difference in 

postmetamorphic survival should be compared between fields dominated by native 

warm-season grass (e.g., big bluestem, Andropogon gerardii) versus those covered by 

exotic cool-season grasses (e.g., tall fescue, Lolium arundinaceum), which the later are 

common in agricultural landscapes.  Native warm-season grasses may benefit amphibians 

by providing greater structural complexity, which might reduce predation by avian 

predators and decrease incidence with the sun.  Ultimately, native warm season grasses 

may provide more suitable habitat conditions for amphibians and increase connectivity 

among spatially disjunct habitats.  Such studies will improve our understanding of the 

effectiveness of conservation strategies on minimizing the impacts of anthropogenic 

stressors on amphibians.      
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CHAPTER 4 

CONCLUSIONS 

My study provided evidence that allowing cattle access in wetlands influences 

resident amphibian communities on the Cumberland Plateau, Tennessee.  Specifically, 

green frog metamorph abundance was reduced at cattle-access wetlands.  American 

bullfrogs also followed this trend.  On the other hand, American and Fowler’s toad 

abundance was positively associated with cattle-access wetlands, and these trends were 

generally observed across all age classes.  In general, no differences in species richness 

and diversity were detected between cattle-access and non-access wetlands, although 

there was a tendency for species richness to be greatest at cattle-access wetlands in May 

and greatest at non-access wetlands in June and July.  Total postmetamorphic abundance 

also differed among months, and generally was greatest in June and July at cattle-access 

and non-access wetlands, respectively.  This trend was primarily driven by metamorphs.  

Postmetamorphic body size of bufonids was greater at non-access wetlands, whereas 

ranids typically were bigger at cattle-access wetlands.  This trend followed a density-

dependent relationship.  Percent horizontal and vertical cover and plant height of 

shoreline vegetation were less at cattle-access wetlands.  In addition, a concurrent study 

(Schmutzer 2007) found that water quality was substantially lower at cattle-access 

wetlands.  Pathological examination of opportunistically collected postmetamorphic 

amphibians revealed that individuals were exposed to a variety of potential pathogens, 

but in general, a trend of histological changes representative of a morbid condition were 

not noted between cattle land-use types.  Sample sizes associated with these analyses 

were small and most of the individuals I collected did not exhibit gross signs of disease.  
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Hence, the lack of trend with my pathology results needs to be interpreted cautiously, and 

further investigation of cattle impacts on diseases in postmetamorphic amphibians is 

warranted.  Finally, landscape analyses revealed that wetland positioning and geometric 

complexity of the landscape between wetlands is important in structuring amphibian 

communities on the Cumberland Plateau.  Overall, bufonids and southern leopard frogs 

were positively associated with wetland isolation but negatively associated with 

increasing inter-wetland geometric complexity.  Green frogs, American bullfrogs and 

pickerel frogs generally showed opposite relationships compared to these species.   

 It is likely that several abiotic and biotic mechanisms were responsible for trends 

observed in amphibian communities between cattle-access and non-access wetlands.  

Species-specific differences in abundance probably were related to different habitat 

preferences between bufonids and ranids.  In general, bufonids can tolerate open areas 

with little vegetation, and ranids prefer aquatic habitats with more vegetation where there 

may less of a risk of desiccation (Conant and Collins 1998, Lannoo 2005).  In addition, 

differences in species-specific tolerances to water quality may have contributed to 

abundance trends.  Controlled studies suggest that bufonid tadpoles can tolerate poorer 

water quality than ranid tadpoles (Jofre and Karasov 1999).  Thus, poor water quality 

may have positively influenced postmetamorphic recruitment of bufonids at cattle-access 

wetlands.  Density of conspecific larval and postmetamorphic amphibians at my wetlands 

probably was the primary driving force behind postmetamorphic body size trends 

between land uses.  In general, amphibian abundance and postmetamorphic body size 

were negatively related across species.  Schmutzer (2007) also reported similar species-

specific abundance and body size trends in amphibian larvae between land-use types at 
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my study wetlands.  Differences in species-specific vagility (i.e., maximum dispersal 

capability and home range size), habitat preference, and competitive interactions are 

possible mechanisms driving the trend that bufonids were positively related with wetland 

isolation and negatively related with most ranids.  My results collectively indicate that 

allowing cattle access in wetlands affects the structure of the amphibian community in 

Cumberland Plateau wetlands.  Some ranids appear to be negatively impacted, while 

cattle access in wetlands does not appear to negatively impact bufonids.  Unfortunately, 

my results are limited to common species in Tennessee.  Less commonly caught species 

that use lentic wetland systems for breeding, such as ambystomatid salamanders and 

hylids, may be negatively impacted, but few captures prevented documentation of any 

trends.  Indeed, futures studies need to ascertain the potential influences of cattle on 

amphibian species of concern in Tennessee and elsewhere.  

 Given that negative associations of cattle and some amphibian species were 

documented, I recommend that some level of cattle exclusion from agricultural wetlands 

should occur.  Agricultural wetlands are important habitats for amphibians (Knutson et al. 

2004), and often are the only breeding sites remaining in anthropogenically disturbed 

landscapes.  Fencing cattle from wetlands completely and establishing conservation 

buffers (e.g., 160 – 200m; Regosin et al. 2005, Rittenhouse and Semlitsch 2007) is an 

ideal scenario.  Partial exclosures, rotational grazing, or moderating grazing density 

(number of head per ha of wetland) may be alternatives but need to be tested with 

research.   

Most farmers on the Cumberland Plateau and elsewhere in Tennessee do not have 

the funds necessary to voluntarily implement such conservation strategies.  Thus, I 
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recommend that conservation strategies be implemented through cost-share programs, 

such as those provided by USDA NRCS (e.g., Environmental Quality Incentives Program 

[EQIP], Wetlands Reserve Program [WRP], Wildlife Habitat Incentives Program 

[WHIP]).  The EQIP program currently provides 75% cost share and technical assistance 

to farmers for fencing off cattle from wetlands and riparian areas, and for purchasing 

water tanks and pipes necessary to distribute water to pastures (NRCS 2004).  Regulating 

cattle access in wetlands will reduce negative impacts on shoreline vegetation and 

increase water quality, which will benefit resident amphibians.  In California, controlling 

grazing intensity in wetlands has improved habitat for two federally listed species: the 

red-legged frog (Rana aurora) and California tiger salamander (Ambystoma 

californiense, Contra Costa Water District 2005).  Given that beef farming in Tennessee 

generates $514 million annually in revenue (Livestock, Dairy and Poultry Outlook 2006), 

implementing prudent conservation practices that are sensitive to the needs of the beef 

industry also is important.  I believe that plans to partially or completely exclude cattle 

from wetlands, in conjunction with cost-share incentives, will have the greatest likelihood 

of acceptance by Tennessee beef farmers.   

Excluding cattle from wetlands also may benefit herd health.  Pathogens, such as 

Cryptosporidium spp., Leptospira spp., Salmonella spp., Mycobacterium spp. and 

Listeria spp., have either been documented or have the potential to be transmitted from 

wildlife to livestock via surface water (Botzler et al. 1973, Shotts 1981, Mahon and 

Manuselis 1995, Beard et al. 2001, Daniels et al. 2003).   In addition, cattle infected by 

these or other pathogens can transmit them to other herd members via fecal-oral route 

when they defecate and urinate in communal water sources such as wetlands (Theon and 
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Johnson 1970, Botzler et al. 1973, Shotts 1981, Katz et al. 1982, Daniels et al. 2003).  

Reducing the risk of transmitting pathogens between wildlife and cattle, or within cattle 

herds, has financial and public health benefits.  For example, cattle infected with 

Mycobacterium paratuberculosis have reduced daily milk production (USDA 1999).  

Similarly, a study reported that 50% of dairy farms that tested positive for 

Cryptosporidium spp. experienced economic losses in milk production and cattle 

mortality (Anderson 1988).  Infection of cattle by zoonotic pathogens also can impact 

human health, because they can be transferred to consumers in food products (Callaway 

et al. 2005).  For example, the pathogen Escherichia. coli O157:H7 is frequently passed 

to humans via undercooked or uncooked beef and vegetables (Lynch 2006).  Humans that 

contract the pathogen experience severe, bloody diarrhea and intestinal hemorrhaging 

(CDC 2002).  In immunocompromised individuals, the pathogen may cause hemolytic 

uremic syndrome (HUS), which results in renal failure (CDC 2002).  Humans also can 

contract zoonotic pathogens in the environment when water contaminated with infected 

cattle feces is used for drinking, recreation or irrigation (EPA 2001).  For example, there 

was an outbreak of E. coli O157 in Walkerton, Ontario, in 2000 that resulted in hundreds 

of cases of diarrhea, five deaths, and an estimated $155 million in health care costs 

(PHAC 2000).  It was determined that cattle manure that washed into the city water 

supply after heavy rains was the source of contamination (PHAC 2000).  Indeed, 

excluding cattle from wetlands will decrease fecal loads in surface water and reduce the 

likelihood of human infection by zoonotic pathogens.  Therefore, I suggest that fencing 

cattle from wetlands is a prudent public health strategy in addition to being beneficial to 

amphibians.  Sharing results from my study and Schmutzer (2007) with farmers as well 
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as alerting them of the agro-economic and public health benefits of excluding cattle from 

wetlands will be important in ensuring the success of cattle-exclusion conservation 

strategies.  

As alluded, research is needed on the benefits of regulating cattle use in wetlands 

on amphibians.  Additional studies should include laboratory and field experiments that 

evaluate species tolerances to herbicides, pesticides, antibiotics and fertilizers, and how 

they may interact with pathogen infectivity and endocrine disruption.  Quantifying the 

impacts of different land cover types and edges on species- and age-specific movements 

as well as quantifying maximum dispersal distances for Tennessee amphibians is needed.   

Studies such as Schmutzer (2007) and mine help contribute to our understanding 

of the impacts of anthropogenic stressors on amphibian populations and global declines.  

However, research should not be restricted to documenting impacts.  Researchers and 

biologists must endeavor to conceive and test the effectiveness of reasonable 

conservation strategies that minimize human impacts, while compromising with human 

needs.  I also think future efforts need to focus on less common species, because they are 

most at risk of extinction.  Lastly, waiting to document all possible impacts and 

interactions of human stressors on amphibians prior to making conservation 

recommendations will likely be too late for many rare species found in the United States 

and elsewhere.  Thus, I encourage researchers to make conservation recommendations as 

data are acquired, and aggressively evaluate conservation strategies to document benefits 

for amphibians and other wildlife.  
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Table 1.  Mean cattlea abundance and density at four cattle-access wetlands on the 

University of Tennessee Plateau Research and Education Center, Crossville, Tennessee, 

March – August 2005 and 2006. 

Wetland Size (ha) Year Mean Abundance Densityb 

1 0.1433 2005 46 321.00 
  2006 31 216.33 
2 0.2830 2005 39 137.81 
  2006 43 151.94 
3 0.6091 2005 24 39.40 
  2006 25 41.04 
4 0.2248 2005 19 84.52 
  2006 14 62.28 

aCattle included black angus cows, calves and bulls. 

bDensity = x cattle/ ha of wetland. 
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Table 2.  Relative daily abundancea of amphibians between cattle land uses at eight 

wetlands on the University of Tennessee Plateau Research and Education Center, 

Crossville, Tennessee, March – August 2005 and 2006.  

  Land-use Type 
Speciesb Yearc Access  Non-access 

  x d,e,f SE  x  SE 
ACCR Combined 0.00011 A 0.00011  0.00015 A 0.00010 

 2005 0.00022 A 0.00022  0.00030 A 0.00021 
 2006 NT NT  NT NT 

AMTA Combined 0.00027 A 0.00016  0.00053 A 0.00031 
 2005 0 A 0  0.00097 A 0.00056 
 2006 0.00054  A 0.00032  0.00009  A 0.00009 

BUAM Combined 0.01909 A 0.01279  0.00027 B 0.00016 
 2005 0.03204 A 0.02555  0.00047 B 0.00027 
 2006 0.00613  A 0.00284  0.00008  B 0.00008 

BUFO Combined 0.01126 A 0.00771  0.00162 A 0.00036 
 2005 0.01190 A 0.01026  0.00303 A 0.00060 
 2006 0.01063  A 0.00538  0.00022  A 0.00022 

DEOC Combined 0.00012 A 0.00012  0.00033 A 0.00033 
 2005 0 A 0  0.00044 A 0.00044 
 2006 0.00024  A 0.00024  0.00022  A 0.00022 

HYCH Combined 0.00007 A 0.00007  0 A 0 
 2005 NT NT  NT NT 
 2006 0.00014  A 0.00014  0 A 0 

NOVI Combined 0.00034 A 0.00034  0.00012 A 0.00012 
 2005 0 A 0  0.00023 A 0.00023 
 2006 0.00068 A 0.00068  0 A 0 

PLGL Combined 0 A 0  0.00070 A 0.00070 
 2005 0  A 0  0.00094 A 0.00094 
 2006 0 A 0  0.00047  A 0.00047 

PSCR Combined 0.00037 A 0.00024  0.00071 A 0.00024 
 2005 0.00050 A 0.00050  0.00119 A 0.00044 
 2006 0.00024  A 0.00024  0.00023  A 0.00023 

PSMO Combined 0 A 0  0.00004 A 0.00004 
 2005 0 A 0  0.00007 A 0.00008 
 2006 NT NT  NT NT 

RACA Combined 0.00624 A 0.00564  0.01115 A 0.00303 
 2005 0.00827 A 0.00738  0.00659 A 0.00142 
 2006 0.00421  A 0.00390  0.01572  A 0.00492 
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Table 2 (continued). 

  Land-use Type 
Speciesb Yearc Access  Non-access 

  x d,e,f SE  x  SE 
RACL Combined 0.01945 A 0.01165  0.08019 A 0.02756 

 2005 0.02742 A 0.01662  0.06394 A 0.01854 
 2006 0.01149  A 0.00679  0.09643  B 0.03735 

RAPA Combined 0.00797 A 0.00697  0.00403 A 0.00073 
 2005 0.00780 A 0.00633  0.00119 A 0.00018 
 2006 0.00814  A 0.00766  0.00688  A 0.00137 

RASP Combined 0.01542 A 0.01404  0.00708 A 0.00661 
 2005 0.00773 A 0.00723  0.00137 A 0.00106 
 2006 0.02311  A 0.02087  0.01279  A 0.01218 
aRelative abundance was mean daily capture in pitfall traps standardized by 

wetland size and number of days sampled per month. 

bACCR = northern cricket frog (Acris crepitans), AMTA = mole salamander 

(Ambystoma talpoideum), BUAM = American toad (Bufo americanus), BUFO = Fowler’s 

toad (B. fowleri), DEOC = Ocoee salamander (Desmognathus ocoee),  HYCH = Cope’s 

gray treefrog (Hyla chrysoscelis), NOVI = eastern red-spotted newt (Notophthalmus 

viridescens), PLGL = northern slimy salamander (Plethodon glutinosus), PSCR = spring 

peeper (Pseudacris crucifer), PSMO = mud salamander (Pseudotriton montanus), RACA 

= American bullfrog (Rana catesbeiana), RACL = green frog (R. clamitans), RAPA = 

pickerel frog (R. palustris), RASP = southern leopard frog (R. sphenocephala). 

 cCombined = data averaged across years. 

dMeans within rows followed by unlike letters are different by repeated-measures 

analysis-of-variance for combined RACL, RACL in 2005 and RACA in 2006; Wilcoxon 

two-sample test was used for all other tests (i.e., normality was violated; Shapiro-Wilk 

test, P ≤ 0.01).  
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Table 2 (continued). 

eNT = no test was performed because capture = 0. 

fThere was a significant month × land-use interaction for RACL in 2006; land-use 

differences existed only in May and July. 
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Table 3.  Relative daily abundancea for each age and sex class of amphibian species that 

differed significantly in relative daily abundance between cattle land uses (see Table 2) at 

eight wetlands on the University of Tennessee Plateau Research and Education Center, 

Crossville, Tennessee, March – August 2005 and 2006. 

aRelative abundance was mean daily capture in pitfall traps standardized by 

wetland size and number of days sampled per month. 

bBUAM = American toad (Bufo americanus), RACL = green frog (Rana 

clamitans). 

Land-use Type 
Access Non-access Speciesb Age and 

Sex Classc Yeard 

x e SE x  SE 
BUAM meta Combined 0.0057 A 0.0050 0.0005 A 0.0002 

  2005 0.0054 A 0.0052 0.0007 A 0.0004 
  2006 0.0061 A 0.0050 0.0002 A 0.0002 
 juv Combined 0.0013 A 0.0010 0.0001 A 0.0001 
  2005 0.0010 A 0.0006 0.0002 A 0.0002 
  2006 0.0016 A 0.0016 0 A 0 
 AF Combined 0.0017 A 0.0003 0.0001 B 0.0001 
  2005 0.0025 A 0.0005 0 B 0 
  2006 0.0010 A 0.0004 0.0001 A 0.0001 
 AM Combined 0.0045 A 0.0020 0.0002 B 0.0001 
  2005 0.0055 A 0.0035 0.0003 A 0.0002 
  2006 0.0036 A 0.0013 0 B 0 

RACL meta Combined 0.0170 A 0.0104 0.0772 A 0.0273 
  2005 0.0244 A 0.0145 0.0602 A 0.0189 
  2006 0.0096 A 0.0063 0.0942 B 0.0366 
 juv Combined 0.0011 A 0.0005 0.0020 A 0.0008 
  2005 0.0015 A 0.0012 0.0018 A 0.0007 
  2006 0.0006 A 0.0006 0.0022 A 0.0009 
 AF Combined 0.0011 A 0.0004 0.0006 A 0.0003 
  2005 0.0016 A 0.0011 0.0011 A 0.0006 
  2006 0.0006 A 0.0004 0.0001 A 0.0001 
 AM Combined 0.0003 A 0.0003 0.0004 A 0.0004 
  2005 0 A 0 0.0008 A 0.0007 
  2006 0.0007 A 0.0007 0 A 0 
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Table 3 (continued). 

cmeta = metamorph (<1 yr old), juv = juvenile (>1 yr but not displaying 

secondary sexual characteristics), AF =  adult female (>1 yr and possessing female 

reproductive characteristics such as eggs), AM = adult male (>1 yr and possessing male 

reproductive characteristics such as vocal sacs). 

  dCombined = data averaged across years. 

eMeans within rows followed by unlike letters are different by repeated-measures 

analysis-of-variance for RACL meta and juv in combined years and in 2005; Wilcoxon 

two-sample test was used for all other tests (i.e., normality was violated; Shapiro-Wilk 

test, P ≤ 0.06). 
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Table 4.  Mean breeding call indexa of amphibians between cattle land uses at eight 

wetlands on the University of Tennessee Plateau Research and Education Center, 

Crossville, Tennessee, March – August 2005 and 2006.  

  Land-use Type 
Speciesb Yearc Access  Non-access 

  x d,e,f SE  x  SE 
ACCR Combined 0.574 A 0.304  0.333 A 0.096 

 2005 0.640 A 0.316  0.428 A 0.130 
 2006 0.507 A 0.293  0.239 A 0.067 

BUAM Combined 0.084 A 0.0008  0.022 B 0.015 
 2005 0.112 A 0.015  0.044 A 0.030 
 2006 0.055 A 0.028  0 B 0 

BUFO Combined 0.207 A 0.069  0.013 B 0.008 
 2005 0.133 A 0.075  0 B 0 
 2006 0.282 A 0.075  0.025 B 0.016 

GACA Combined 0.002 A 0.002  0 A 0 
 2005 NT NT  NT NT 
 2006 0.004 A 0.004  0 A 0 

HYCH Combined 0.506 A 0.060  0.038 B 0.013 
 2005 0.385 A 0.104  0.050 A 0.024 
 2006 0.627 A 0.124  0.025 B 0.011 

PSCR Combined 0.547 A 0.197  0.957 A 0.105 
 2005 0.452 A 0.161  0.959 B 0.111 
 2006 0.643 A 0.237  0.954 A 0.120 

PSTR Combined 0.028 A 0.010  0.005 A 0.005 
 2005 0.023 A 0.013  0.010 A 0.010 
 2006 0.031 A 0.020  0 A 0 

RACA Combined 0.677 A 0.170  0.741 A 0.065 
 2005 0.738 A 0.215  0.855 A 0.118 
 2006 0.616 A 0.135  0.628 A 0.044 

RACL Combined 1.228 A 0.149  1.228 A 0.181 
 2005 1.232 A 0.118  1.255 A 0.157 
 2006 1.225 A 0.181  1.201 A 0.209 

RAPA Combined 0.330 A 0.038  0.485 A 0.075 
 2005 0.301 A 0.094  0.419 A 0.122 
 2006 0.358 A 0.061  0.552 B 0.060 

RASP Combined 0.164 A 0.024  0.118 A 0.047 
 2005 0.235 A 0.076  0.160 A 0.061 
 2006 0.092 A 0.046  0.076 A 0.057 
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Table 4 (continued). 

aThe following indices were assigned to male breeding choruses:1 = individuals 

can be distinguished and calls do not overlap, 2 = calls overlap but individuals can be 

distinguished, 3 = calls overlap and individuals cannot be distinguished (full chorus). 

bACCR = northern cricket frog (Acris crepitans), BUAM = American toad (Bufo 

americanus), BUFO = Fowler’s toad (B. fowleri),  GACA = Eastern narrowmouth toad 

(Gastrophryne carolinensis), HYCH = Cope’s gray treefrog (Hyla chrysoscelis), PSCR = 

spring peeper (Pseudacris crucifer), PSTR = upland chorus frog (Pseudacris triseriata), 

RACA = American bullfrog (Rana catesbeiana), RACL = green frog (R. clamitans), 

RAPA = pickerel frog (R. palustris), RASP = southern leopard frog (R. sphenocephala). 

cCombined = data averaged across years. 

dMeans within rows followed by unlike letters are different by repeated-measures 

analysis-of-variance for ACCR, PSCR, RACA,RACL,RAPA,RASP in 2005 and BUAM, 

BUFO, PSCR, RACA, RACL, and RAPA in 2006, and combined ACCR, PSCR, RACA, 

RACL, RAPA, RASP; Wilcoxon two-sample test was used for all other tests (i.e., 

normality was violated; Shapiro-Wilk test, P ≤ 0.09). 

eThere was a significant month × land-use interaction for combined BUAM, 

BUFO, HYCH, PSCR, and RAPA, for BUFO, HYCH, and RAPA in 2006 and for HYCH 

and PSCR in 2005; land-use differences existed only in April for combined BUAM, in 

May and June for combined BUFO and in 2006, in June for HYCH in 2005, and in May 

and June for combined HYCH and in 2006, in March for combined PSCR and in 2005, 

and March for combined RAPA and in 2006. 

fNT = no test was performed because index = 0. 
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Table 5.  Abundance of amphibian egg masses between cattle land uses at eight wetlands 

on the University of Tennessee Plateau Research and Education Center, Crossville, 

Tennessee, March – August 2005 and 2006. 

aRACA = American bullfrog (Rana catesbeiana), RACL = green frog (R. 

clamitans), RAPA = pickerel frog (R. palustris), RASP = southern leopard frog (R. 

sphenocephala), HYCH = Cope’s gray treefrog (Hyla chrysoscelis), BUFO = American 

toad (Bufo americanus) and Fowler’s toad (B. fowleri), All Species = all species 

combined. 

bRACA-RACL, RAPA-RASP and BUFO groups were used because eggs of these 

species were indistinguishable in the field. 

cCombined = data averaged across years. 

dWilcoxon two-sample test was used for all tests (i.e., normality was violated; 

Shapiro-Wilk test, P ≤ 0.06). 

  Land-use Type 
Speciesa,b Yearc Access  Non-access 

  x d,e,f SE  x  SE 
RACA-RACL Combined 0.25 A 0.20  0.13 A 0.10 

 2005 0.29 A 0.18  0.21 A 0.21 
 2006 0.21 A 0.21  0.04 A 0.04 

RAPA-RASP Combined 0.31 A 0.15  0 B 0 
 2005 0.33 A 0.24  0 A 0 
 2006 0.29 A 0.20  0 A 0 

HYCH Combined 0.35 A 0.33  0 A 0 
 2005 NT NT  NT NT 

 2006 0.71 A 0.65  0 A 0 
BUFO Combined 0.02 A 0.02  0 A 0 

 2005 0.04 A 0.04  0 A 0 
 2006 NT NT  NT NT 

All Species Combined 0.94 A 0.64  0.13 A 0.10 
 2005 0.67 A 0.42  0.21 A 0.21 
 2006 1.21 A 0.91  0.04 A 0.04 
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Table 5 (continued). 

eNT = no test performed because observations = 0. 

fThere was a significant month × land-use interaction for combined RAPA-RASP; 

land-use differences existed only in April. 
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Table 6.  Amphibian species richness and diversity between cattle land uses at eight 

wetlands on the University of Tennessee Plateau Research and Education Center, 

Crossville, Tennessee, March – August 2005 and 2006. 

   Land-use Type 
Metrica Yearb Monthc Access  Non-access 

   x d SE  x  SE 
RP Combined March 0.38 A 0.24  0.13 A 0.13 

  April 0.47 A 0.08  0.26 A 0.11 
  May 0.53 A 0.17  0.40 A 0.14 
  June 1.04 A 0.44  1.33 A 0.22 
  July 0.67 A 0.35  1.57 A 0.35 
  August 0.33 A 0.13  1.10 B 0.18 
 2005 NI 0.68 A 0.29  0.80 A 0.09 
 2006 March 0 A 0  0 A 0 
  April 0.50 A 0.05  0.13 B 0.09 
  May 0.36 A 0.11  0.17 A 0.03 
  June 1.11 A 0.54  1.50 A 0.28 
  July 0.56 A 0.40  1.78 B 0.43 
  August 0.25 A 0.05  1.28 B 0.26 

RC Combined March 1.25 A 0.25  2.13 A 0.38 
  April 4.50 A 0.35  4.00 A 0.20 
  May 6.00 A 0.84  5.25 A 0.14 
  June 5.13 A 0.31  3.75 B 0.32 
  July 3.63 A 0.24  2.88 A 0.43 
  August 2.38 A 0.31  2.13 A 0.13 
 2005 NI 4.30 A 0.45  3.80 A 0.08 
 2006 March 1.25 A 0.48  2.00 A 0.41 
  April 4.50 A 0.65  3.25 A  0.25 
  May 6.00 A 0.71  5.50 A 0.50 
  June 5.25 A 0.48  3.25 B 0.48 
  July 4.00 A 0.58  2.75 A 0.48 
  August 2.00 A 0.41  2.25 A 0.25 

Diversity Combined NI 0.09 A 0.07  0.14 A 0.05 
 2005 NI 0.11 A 0.10  0.11 A 0.05 
 2006 NI 0.07 A 0.04  0.17 A 0.05 

aRP = species richness from pitfall traps, RC =  species richness from breeding 

call surveys, Diversity = Shannon-Weiner Diversity Index. 

bCombined = data averaged across years. 
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Table 6 (continued). 

cThere was a significant month × land-use interaction when analyses are separated 

by months; NI = no interaction was detected. 

dMeans within rows followed by unlike letters are different by repeated-measures 

analysis-of-variance for RP and RC in 2005, and diversity in 2006; analysis-of-variance 

was used for RP in combined years and in 2006 for RP and RC; Wilcoxon two-sample was 

performed for diversity in combined years and in 2005, and RC in combined years (i.e., 

normality was violated; Shapiro-Wilk test, P = 0.04). 
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Table 7.  Mass (g) of postmetamorphic amphibians between cattle land uses at eight 

wetlands on the University of Tennessee Plateau Research and Education Center, 

Crossville, Tennessee, March – August 2005 and 2006. 

Land-use Type 
Access  Non-access Speciesa Age and 

Sex Classb,c 
n x d SE  n x  SE 

BUAM juv* 13 3.02 A 0.98  2 4.75 A 2.0 
 AM* 33 26.31 A 1.45  2 19.50 A 3.25 

BUFO meta* 56 0.85 A 0.44  3 2.42 B 1.80 
 juv* 10 2.45 A 0.67  9 5.19 B 0.73 
 AF 6 30.75 A 3.75  2 31.0 A 25.0 
 AM* 28 19.75 A 0.94  3 22.53 A 2.73 

PSCR AF* 2 1.75 A 1.0  3 3.42 A 0.08 
RACA meta* 33 5.03 A 0.56  88 4.38 A 0.25 

 juv 5 12.45 A 0.67  4 12.50 A 2.43 
 AF* 7 29.0 A 6.60  6 20.88 A 3.86 

RACL meta* 105 3.79 A 0.17  422 2.78 B 0.06 
 Juv* 8 8.49 A 1.49  23 8.15 A 0.62 
 AF 7 27.96 A 4.34  6 27.08 A 3.01 

RAPA meta* 28 1.78 A 0.09  32 1.44 B 0.09 
 AF* 6 15.67 A 0.42  2 22.50 A 11.0 

RASP meta* 57 1.73 A 0.07  68 1.38 B 0.06 
aBUAM = American toad (Bufo americanus), BUFO = Fowler’s toad (B. fowleri), 

PSCR = spring peeper (Pseudacris crucifer), RACA = American bullfrog (Rana 

catesbeiana), RACL = green frog (R. clamitans), RAPA = pickerel frog (R. palustris), 

RASP = southern leopard frog (R. sphenocephala). 

bmeta = metamorph (<1 yr old), juv = juvenile (>1 yr but not displaying 

secondary sexual characteristics), AF =  adult female (>1 yr and possessing female 

reproductive characteristics such as eggs), AM = adult male (>1 yr and possessing male 

reproductive characteristics such as vocal sacs). 

cIf an age-sex class is missing, analyses were not performed due to insufficient 

data. 
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Table 7 (continued). 

dMeans within rows followed by unlike letters are different by analysis-of-

covariance with date of capture as the covariate; “*” = Wilcoxon two-sample test was 

performed (i.e., normality was violated; Shapiro-Wilk test, P ≤ 0.03).       
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Table 8.  Snout-vent length (mm) of postmetamorphic amphibians between cattle land uses 

at eight wetlands on the University of Tennessee Plateau Research and Education Center, 

Crossville, Tennessee, March – August 2005 and 2006. 

                                         Land-use Type 
Access Non-access Speciesa Age and 

Sex Classb,c 
n x d SE n x  SE 

BUAM juv 13 26.78 A 2.83 2 34.39 A 4.49 
 AM 33 60.93 A 0.96 2 53.24 B 0.64 

BUFO meta* 56 12.75 A 0.40 3 17.5 B 1.48 
 juv* 10 28.73 A 1.92 9 34.42 B 1.75 
 AF 6 62.42 A 2.84 2 55.66 A 16.37 
 AM 28 53.82 A 0.79 3 59.96 B 1.27 

PSCR AF* 2 25.31 A 3.11 3 30.37 A 0.18 
RACA meta* 33 37.36 A 1.26 88 35.02 A 0.63 

 juv 5 50.13 A 0.85 4 50.91 A 2.97 
 AF 7 63.82 A 5.21 6 59.47 A 3.80 

RACL meta* 105 32.47 A 0.39 422 29.78 B 0.23 
 juv* 8 42.89 A 1.88 23 44.07 A 1.03 
 AF 7 64.56 A 3.47 6 63.56 A 2.35 

RAPA meta* 28 27.38 A 0.68 32 25.55 B 0.63 
 AF 6 58.75 A 0.87 2 60.51 A 12.30 

RASP meta* 57 26.36 A 0.27 68 24.59 B 0.35 
aBUAM = American toad (Bufo americanus), BUFO = Fowler’s toad (B. fowleri),  

PSCR = spring peeper (Pseudacris crucifer), RACA = American bullfrog (Rana 

catesbeiana), RACL = green frog (R. clamitans), RAPA = pickerel frog (R. palustris), 

RASP = southern leopard frog (R. sphenocephala). 

bmeta = metamorph (<1 yr old), juv = juvenile (>1 yr but not displaying 

secondary sexual characteristics), AF =  adult female (>1 yr and possessing female 

reproductive characteristics such as eggs), AM = adult male (>1 yr and possessing male 

reproductive characteristics such as vocal sacs). 

cIf an age-sex class is missing, analyses were not performed due to insufficient 

data. 
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Table 8 (continued). 

dMeans within rows followed by unlike letters are different by analysis-of-

covariance with day of capture as a covariate for snout-vent length; “*” = Wilcoxon two-

sample test was performed (i.e., normality was violated; Shapiro-Wilk test, P ≤ 0.09).     
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Table 9.  Emergent shoreline vegetation characteristics and soil compaction between cattle 

land uses at eight wetlands on the University of Tennessee Plateau Research and 

Education Center, Crossville, Tennessee, March – August 2005 and 2006. 

                            Land-use Type 

Metrica Year b Access  Non-access 
  x c SE  x  SE 

Hgt (m) Combined 0.51 A 0.09  0.80 B 0.06 
 2005 0.42 A 0.08  0.73 B 0.08 
 2006 0.60 A 0.11  0.86 A 0.03 

HC Combined 53.70 A 5.37  66.49 A 2.34 
 2005 47.48 A 4.33  59.42 B 3.31 

 2006 59.93 A 6.69  73.56 A 3.54 
VS Combined 27.06 A 4.94  43.43 B 3.12 

 2005 24.48 A 4.40  44.94 B 6.14 
 2006 29.65 A 5.79  41.92 B 0.92 

Richness Combined 4.27 A 0.65  4.60 A 0.28 
  2005 4.23 A 0.98  4.03 A 0.38 
 2006 4.31 A 0.46  5.18 A 0.36 

SC (lbs/in2) 2006 514.78 A 34.61  332.77 B 29.85 
aHgt = mean plant height, HC = percent horizontal cover, VS = percent vertical 

structure, Richness = plant species richness, SC = soil compaction. 

bCombined = data averaged across years. 

cMeans within rows followed by unlike letters are different by repeated-measures 

analysis-of-variance for all tests on vegetation variables, except Hgt and VS in 2006 and 

combined HC, where Wilcoxon two-sample test was used because normality was violated 

(Shapiro-Wilk test, P ≤ 0.09);  analysis-of-covariance was for soil compaction tests with 

sampling distance from the wetland as the covariate. 
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Table 10.  Relative daily abundance of definitive avian hosts of Ribeiroia ondatrae 

between cattle land uses at eight wetlands on the University of Tennessee Plateau 

Research and Education Center, Crossville, Tennessee, March – August 2005 and 2006. 

                            Land-use Type 

Speciesa Year b Access  Non-access 
  x c,d SE  x  SE 

Great blue heron Combined 0.027 A 0.004  0.019 A 0.011 
 2005 0.037 A 0.005  0.034 A 0.019 
 2006 0.017 A 0.005  0.005 A 0.005 

Green heron Combined 0.007 A 0.003  0.043 B 0.018 
 2005 0.005 A 0.003  0.049 B 0.023 
 2006 0.010 A 0.004  0.038 A 0.016 

Mallard Combined 0.074 A 0.028  0.004 B 0.004 
 2005 0.115 A 0.067  0 A 0 
 2006 0.033 A 0.014  0.007 A 0.007 

Wood duck Combined 0.005 A 0.005  0.009 A 0.007 
 2005 0.005 A 0.005  0.014 A 0.014 
 2006 0.005 A 0.005  0.005 A 0.005 

All Species Combined 0.113 A 0.031  0.076 A 0.034 
 2005 0.161 A 0.072  0.096 A 0.050 
 2006 0.064 A 0.013  0.055 A 0.029 

aGreat blue heron (Ardea herodias), Green heron (Butorides Virescens), Mallard 

(Anas platyrhynochos), Wood duck (Aix sponsa), All Species = all species combined. 

    bCombined = data averaged across years. 

cMeans within rows followed by unlike letters are different by repeated-measures 

analysis-of-variance for great blue heron in 2005 and 2006; Wilcoxon two-sample test was 

used for all other tests (i.e., normality was violated; Shapiro-Wilk test, P ≤ 0.02).   

dThere was a significant month × land-use interaction for combined mallard; land-

use differences existed only in March. 
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Table 11.  Relative daily abundancea of amphibians among months at eight wetlands on the University of Tennessee Plateau 

Research and Education Center, Crossville, Tennessee, March – August 2005 and 2006. 

  Month 

Speciesb Yearc March April May June July August 
  x d,e SE x  SE x  SE x  SE x  SE x  SE 

ACCR Combined 0 A 0 0 A 0 0.0004 A 0.0003 0.0003 A 0.0003 0 A 0 0 A 0 
 2005 0 A 0 0 A 0 0.0009 A 0.0007 0.0007 A 0.0007 0 A 0 0 A 0 
 2006 NT NT NT NT NT NT NT NT NT NT NT NT 

AMTA Combined 0 A 0 0.0012 A 0.0006 0.0008 A 0.0004 0.0001 A 0.0001 0 A 0 0.0003 A 0.0003 
 2005 0 A 0 0.0015 A 0.0001 0.0009 A 0.0007 0.0002 A 0.0002 0 A 0 0.0003 A 0.0003 
 2006 0 A 0 0.0001 A 0.0001 0.0007 A 0.0007 0 A 0 0 A 0 0.0003 A 0.0003 

BUAM Combined 0 A 0 0.0166 A 0.0091 0.0256 A 0.0222 0.0144 A 0.0112 0.0007 A 0.0004 0.0006 A 0.0004 
 2005 0 A 0 0.0204 A 0.0134 0.0503 A 0.0444 0.0250A 0.0223 0.0015A 0.0008 0.0005 A 0.0005 
 2006 0 B 0 0.0129 A 0.0064 0.0011 B 0.0008 0.0040 AB 0.0040 0 B 0 0.0007 B 0.0007 

BUFO Combined 0 A 0 0.0061 A 0.0029 0.0156 A 0.0117 0.0037 A 0.0022 0.0096 A 0.0060 0.0036 A 0.0029 
 2005 0 A 0 0.0052 A 0.0004 0.0139 A 0.0091 0 A 0 0.0185 A 0.0121 0.0073 A 0.0057 
 2006 0 A 0 0.0071 A 0.0045 0.0173 A 0.0145 0.0074 A 0.0043 0.0007 A 0.0007 0 A 0 

DEOC Combined 0 A 0 0.0004 A 0.0004 0.0003 A 0.0003 0.0007 A 0.0007 0 A 0 A 0 A 0 
 2005 0 A 0 0 A 0 0.0007 A 0.0007 0.0007 A 0.0007 0 A 0 0 A 0 
 2006 0 A 0 0.0007 A 0.0007 0 A 0 0.0007 A 0.0007 0 A 0 0 A 0 

HYCH Combined 0 A 0 0 A 0 0.0002 A 0.0002 0 A 0 0 A 0 0 A 0 
 2005 NT NT NT NT NT NT NT NT NT NT NT NT 
 2006 0 A 0 0 A 0 0.0004 A 0.0004 0 A 0 0 A 0 0 A 0 

NOVI Combined 0 A 0 0 A 0 0.0002 A 0.0002 0.0004 A 0.0003 0.0004 A 0.0004 0.0004 A 0.0004 
 2005 0 A 0 0 A 0 0.0005 A 0.0005 0.0002 A 0.0002 0 A 0 0 A 0 
 2006 0 A 0 0 A 0 0 A 0 0.0006 A 0.0006 0.0007 A 0.0007 0.0007 A 0.0007 

PLGL Combined 0 A 0 0 A 0 0.0010 A 0.0010 0 A 0 0.0007 A 0.0007 0.0004 A 0.0004 
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Table 11 (continued). 
  Month 

Speciesb Yearc March April May June July August 
  x d,e SE x  SE x  SE x  SE x  SE x  SE 

PLGL 2005 0 A 0 0 A 0 0.0013 A 0.0013 0 A 0 0.0007 A 0.0007 0.0007 A 0.0007 
 2006 0 A 0 0 A 0 0.0007 A 0.0007 0 A 0 0.0007 A 0.0007 0 A 0 

PSCR Combined 0 B 0 0.0029 A 0.0009 0 B 0 0.0003 B 0.0003 0 B 0 0 B 0 
 2005 0 B 0 0.0051 A 0.0020 0 B 0 0 B 0 0 B 0 0 B 0 
 2006 0 A 0 0.0007 A 0.0007 0 A  0 0.0007 A 0.0007 0 A 0 0 A 0 

PSMO Combined 0 A 0 0 A 0 0 A 0 0.0001 A 0.0001 0 A 0 0 A 0 
 2005 0 A 0 0 A 0 0 A 0 0.0002 A 0.0002 0 A 0 0 A 0 
 2006 NT NT NT NT NT NT NT NT NT NT NT NT 

RACA Combined 0.0015 A 0.0015 0.0018 A 0.0009 0.0027 A 0.0014 0.0105 A 0.0048 0.0216 A 0.0101 0.0141 A 0.0052 
 2005 0.0030 A 0.0030 0.0027 A 0.0011 0.0046 A 0.0026 0.0057 A 0.0042 0.0153 A 0.0092 0.0133 A 0.0083 
 2006 0 B 0 0.0010 B 0.0010 0.0009 B 0.0009 0.0153 B 0.0059 0.0279 A 0.0129 0.0148AB 0.0065 

RACL Combined 0 B 0 0.0016 B 0.0008 0.0098 B 0.0036 0.1938 A 0.0720 0.0583 B 0.0229 0.0354 B 0.0174 
 2005 0 B 0 0.0015 B 0.0015 0.0091 B 0.0045 0.1659 A 0.0450 0.0632 B 0.0220 0.0345 B 0.0147 
 2006 0 B 0 0.0017 B 0.0009 0.0106 B 0.0067 0.2216 A 0.0986 0.0535 B 0.0266 0.0364 B 0.0209 

RAPA Combined 0.0054 A 0.0040 0.0030 A 0.0019 0 A 0 0.0153 A 0.0100 0.0104 A 0.0051 0.0019 A 0.0008 
 2005 0.0108 A 0.0080 0.0054 A 0.0038 0 A 0 0.0043 A 0.0043 0.0052 A 0.0029 0.0012 A 0.0010 
 2006 0 A 0 0.0007 A 0.0005 0 A 0 0.0262 A 0.0159 0.0156 A 0.0074 0.0026 A 0.0014 

RAUT Combined 0.0078 A 0.0078 0.0011 A 0.0010 0.0009 A 0.0009 0.0393A 0.0257 0.0177 A 0.0101 0.0008 A 0.0008 
 2005 0.0156 A 0.0156 0.0020 A 0.0020 0.0017 A 0.0017 0.0020 A 0.0017 0.0058 A 0.0027 0.0003 A 0.0003 
 2006 0 A 0 0.0003 A 0.0003 0 A 0 0.0766 A 0.0498 0.0296 A 0.0183 0.0013 A 0.00130 

aRelative abundance was mean daily capture in pitfall traps standardized by wetland size and number of days sampled per 

month. 
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Table 11. (continued) 

bACCR = northern cricket frog (Acris crepitans), AMTA = mole salamander (Ambystoma talpoideum), BUAM = American 

toad (Bufo americanus), BUFO = Fowler’s toad (B. fowleri), DEOC = Ocoee salamander (Desmognathus ocoee),  HYCH = Cope’s 

gray treefrog (Hyla chrysoscelis), NOVI = eastern red-spotted newt (Notophthalmus viridescens), PLGL = northern slimy 

salamander (Plethodon glutinosus), PSCR = spring peeper (Pseudacris crucifer), PSMO = mud salamander (Pseudotriton 

montanus), RACA = American bullfrog (Rana catesbeiana), RACL = green frog (R. clamitans), RAPA = pickerel frog (R. 

palustris), RASP = southern leopard frog (R. sphenocephala). 

cCombined = data averaged across years. 

dMeans within rows followed by letters are different by repeated-measures analysis-of-variance and Tukey’s HSD test. 

eNT = no test was performed because capture = 0. 
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Table 12.  Mean breeding call index of amphibians among months at eight wetlands on the University of Tennessee Plateau 

Research and Education Center, Crossville, Tennessee, March – August 2005 and 2006. 

  Month 
Species

a
Yearb March April May June July August 

  x c,d SE x  SE x  SE x  SE x  SE x  SE 
ACCR Combined 0 B 0 0.016 B 0.016 0.656 AB 0.198 1.094 A 0.363 0.815 AB 0.360 0.141 AB 0.073 

 2005 0 B 0 0.031 B 0.031 0.788 AB 0.209 1.250 A 0.371 0.917 AB 0.417 0.219 AB 0.110 
 2006 0 A 0 0 A 0 0.525 A 0.193 0.938 A 0.404 0.713 A 0.348 0.063 A 0.063 

BUAM Combined 0 B 0 0.227 A 0.060 0.075 B 0.030 0.016 B 0.016 0 B 0 0 B 0 
 2005 0 A 0 0.344 A 0.100 0.125 B 0.049 0 B 0 0 B 0 0 B 0 
 2006 0 A 0 0.109 A 0.093 0.025 A 0.025 0.031 A 0.031 0 A 0 0 A 0 

BUFO Combined 0 B 0 0.047 AB 0.047 0.231 AB 0.076 0.273 A 0.142 0.108 AB 0.095 0 B 0 
 2005 0 A 0 0 A 0 0.075 A 0.062 0.219 A 0.145 0.104 A 0.104 0 A 0 
 2006 0 B 0 0.094 AB 0.094 0.388 A 0.127 0.328 A 0.146 0.113 AB 0.088 0 B 0 

GACA Combined 0 A 0 0 A 0 0 A 0 0 A 0 0.006 A 0.006 0 A 0 
 2005 NT NT NT NT NT NT NT NT NT NT NT NT 
 2006 0 A 0 0 A 0 0 A 0 0 A 0 0.013 A 0.013 0 A 0 

HYCH Combined 0 B 0 0.023 B 0.023 0.350 A 0.118 0.656 A 0.218 0.602 A 0.250 0 B 0 
 2005 0 B 0 0 B 0 0.063 B 0.042 0.578 A 0.193 0.667 A 0.302 0 B 0 
 2006 0 B 0 0.047 B 0.047 0.638 A 0.220 0.734 A 0.290 0.538 A 0.258 0 B 0 

PSCR Combined 1.594 A 0.395 2.039 A 0.275 0.763 B 0.194 0.117 BC 0.076 0 C 0 0 C 0 
 2005 1.563 A 0.513 1.797 A 0.235 0.688 B 0.188 0.188 BC 0.108 0 C 0 0 C 0 
 2006 1.625 AB 0.451 2.281 A 0.336 0.838 BC 0.229 0.047 C 0.047 0 C 0 0 C 0 

PSTR Combined 0.031 A 0.031 0.047 A 0.033 0.019 A 0.019 0 A 0 0 A 0 0 A 0 
 2005 0 A 0 0.063 A 0.041 0.038 A 0.038 0 A 0 0 A 0 0 A 0 
 2006 0.063 A 0.063 0.031 A  0.031 0 A 0 0 A 0 0 A 0 0 A 0 

RACA Combined 0 C 0 0.008 C 0.008 0.738 B 0.121 1.384 A 0.129 1.458 A 0.156 0.667 B 0.172
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Table 12 (continued). 

  Month 
Speciesa Yearb March April May June July August 

  x c,d SE x  SE x  SE x  SE x  SE x  SE 
RACA 2005 0 C 0 0.016 C 0.016 0.863 B 0.153 1.360 AB 0.176 1.730 A 0.282 0.813 B 0.217 

 2006 0 C 0 0 C 0 0.613 B 0.136 1.409 A 0.119 1.188 A 0.088 0.521 B 0.135 
RACL Combined 0 C 0 0.102 C 0.054 1.075 B 0.181 1.938 A 0.206 2.229 A 0.200 2.026 A 0.205 

 2005 0 D 0 0.063 D 0.047 0.988 C 0.223 1.797 B 0.206 2.458 A 0.188 2.156 AB 0.173 
 2006 0 C 0 0.141 C 0.069 1.163 B 0.156 2.078 A 0.231 2.000 A 0.236 1.896 AB 0.276 

RAPA Combined 0.938 B 0.220 1.383 A 0.127 0.125 C 0.034 0 C 0 0 C  0 0 C 0 
 2005 0.813 A 0.249 1.172 A 0.180 0.175 B  0.075 0 B 0 0 B 0 0 B 0 
 2006 1.063 B 0.333 1.594 A 0.124 0.075 C 0.053 0 C 0 0 C 0 0 C 0 

RASP Combined 0.313 AB 0.155 0.383 A 0.078 0.119 ABC 0.054 0.031 AB 0.017 0 C 0 0 C 0 
 2005 0.500 AB 0.250 0.563 A 0.140 0.125 AB 0.053 0 B 0 0 B 0 0 B 0 
 2006 0.125 A 0.125 0.203 A 0.078 0.113 A 0.072 0.063 A 0.033 0 A 0 0 A 0 

aACCR = northern cricket frog (Acris crepitans), BUAM = American toad (Bufo americanus), BUFO = Fowler’s toad (B. 

fowleri),  GACA = Eastern narrowmouth toad (Gastrophryne carolinensis), HYCH = Cope’s gray treefrog (Hyla chrysoscelis), 

PSCR = spring peeper (Pseudacris crucifer), PSTR = upland chorus frog (Pseudacris triseriata), RACA = American bullfrog 

(Rana catesbeiana), RACL = green frog (R. clamitans), RAPA = pickerel frog (R. palustris), RASP = southern leopard frog (R. 

sphenocephala). 

bCombined = data averaged across years. 

cMeans within rows followed by letters are different by repeated-measures analysis-of-variance and Tukey’s HSD test. 
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Table 12 (continued). 

dNT = no test was performed because index = 0. 
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Table 13.  Amphibian species richness and diversity among months at eight wetlands on the University of Tennessee Plateau 

Research and Education Center, Crossville, Tennessee, March – August 2005 and 2006. 

   Month 

Metrica Yearb March April May June July August 
  

Land-use 
Typec 

x d SE x  SE x  SE x  SE x  SE x  SE 
RP Combined Access 0.38 A 0.24 0.47 A 0.08 0.53 A 0.17 1.04 A 0.44 0.67 A 0.35 0.33 A 0.13 

  Non-access 0.13 C 0.13 0.26 BC 0.11 0.40 BC 0.14 1.33 A 0.22 1.57 A 0.35 1.10 AB 0.18 
 2005 Access 0.75 A 0.48 0.44 A 0.14 0.69 A 0.25 0.97 A 0.34 0.78 A 0.33 0.44 A 0.25 
  Non-access 0.25 B 0.25 0.39 AB 0.14 0.64 AB 0.25 1.16 AB 0.16 1.36 A 0.33 1.00 AB 0.16 
 2006 Access 0 A 0 0.50 A 0.05 0.36 A 0.11 1.11 A 0.54 0.56 A 0.37 0.25 A 0.05 
  Non-access 0 B 0 0.13 B 0.09 0.17 B 0.03 1.50 A 0.28 1.78 A 0.43 1.28 A 0.26 

RC Combined Access 1.25 D 0.25 4.50 AB 0.35 6.00 A 0.84 5.13 AB 0.31 3.63 BC 0.24 2.78 DC 0.31 
  Non-access 2.13 C 0.38 4.00 AB 0.20 5.25 A 0.14 3.75 B 0.32 2.88 BC 0.43 2.13 C 0.13 
 2005 NI 1.75 C 0.37 4.63 AB 0.38 5.50 A 0.73 4.63 AB 0.32 3.13 BC 0.23 2.38 C 0.18 
 2006 Access 1.25 C 0.48 4.50 AB 0.65 6.00 A 0.71 5.25 A 0.48 4.00 AB 0.58 2.00 BC 0.41 
  Non-access 2.00 B 0.41 3.25 B 0.25 5.50 A 0.50 3.25 B 0.48 2.75 B 0.48 2.25 B  0.25 

Diversity Combined Access 0.08 A 0.08 0.06 A 0.01 0.07 A 0.04 0.19 A 0.16 0.12 A 0.11 0.03 A 0.03 
  Non-access 0 B 0 0.03 B 0.03 0.08 AB 0.05 0.18 AB 0.09 0.38 A 0.12 0.19 AB 0.06 
 2005 NI 0.08 A 0.08 0.04 A 0.03 0.13 A 0.05 0.12 A 0.07 0.23 A 0.09 0.09 A 0.04 
 2006 NI 0 C 0 0.04 ABC 0.01 0.03 BC 0.01 0.25 AB 0.10 0.27 A 0.11 0.13 ABC 0.06 

aRP = species richness from pitfall traps, RC =  species richness from breeding call surveys, Diversity = Shannon-Weiner 

Index . 

bCombined = average results of both years combined. 
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Table 13 (continued). 

cThere was a significant month × land-use interaction when analyses were performed by land-use; NI = no interaction was 

detected. 

dMeans within rows followed by unlike letters are different by repeated-measures analysis-of-variance and Tukey’s HSD 

test.  
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Table 14. Abundance of amphibian egg masses among months at eight wetlands on the University of Tennessee Plateau Research 

and Education Center, Crossville, Tennessee, March – August 2005 and 2006. 

 Month 

Speciesa,b Yearc March  April  May  June  July  August 
  x d,e SE  x  SE  x  SE  x  SE  x  SE  x  SE 

RACA−RACL Combined 0 A 0  0 A 0  0 A 0  0.06 A 0.06  0.94 A 0.63  0.13 A 0.08 
 2005 0 A 0  0 A 0  0 A 0  0.13 A 0.13  1.25 A 0.73  0.13 A 0.13 
 2006 0 A 0  0 A 0  0 A 0  0 A 0  0.63 A 0.63  0.13 A 0.13 

RAPA−RASP Combined 0 B 0  0.88 A 0.52  0.06 B 0.06  0 B 0  0 B 0  0 B 0 
 2005  0 A 0  1 A 0.76  0 A 0  0 A 0  0 A 0  0 A 0 
 2006 0 A 0  0.75 A 0.53  0.13 A 0.13  0 A 0  0 A 0  0 A 0 

HYCH Combined 0 A 0  0 A 0  0 A 0  0.75 A 0.68  0.31 A 0.31  0 A 0 
 2005 NT NT  NT NT  NT  NT  NT NT  NT NT  NT NT 
 2006 0 A 0  0 A 0  0 A 0  1.5 A 1.36  0.63 A 0.63  0 A 0 

BUFO Combined 0 A 0  0.06 A 0.06  0 A 0  0 A 0  0 A 0  0 A 0 
 2005 0 A 0  0.13 A 0.13  0 A 0  0 A 0  0 A 0  0 A 0 
 2006 NT NT  NT NT  NT NT  NT NT  NT NT  NT NT 

All Species Combined 0 A 0  0.94 A 0.50  0.06 A 0.06  0.81 A 0.67  1.25 A 0.93  0.13 A 0.08 
 2005 0 A 0  1.13 A 0.86  0 A 0  0.13 A 0.13  1.25 A 0.73  0.13 A 0.13 
 2006 0 A 0  0.75 A 0.53  0.13 A 0.13  1.5 A 1.36  1.25 A 1.25  0.13 A 0.13 
aRACA = American bullfrog (Rana catesbeiana), RACL = green frog (R. clamitans), RAPA = pickerel frog (R. palustris), 

RASP = southern leopard frog (R. sphenocephala), HYCH = Cope’s gray treefrog (Hyla chrysoscelis), BUFO = American toad 

(Bufo americanus) and Fowler’s toad (B. fowleri), All Species = all species combined. 
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Table 14 (continued). 

bRACA-RACL, RAPA-RASP and BUFO groups were used because eggs of these species were indistinguishable in the 

field; All Species = total egg mass abundance across all species groups. 

cCombined = data averaged across years. 

dMeans within rows followed by unlike letters are different by repeated-measures analysis-of-variance.  

eNT = no test performed because observations = 0. 
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Table 15.  Emergent shoreline vegetation characteristics and soil compaction among months at eight wetlands on the University of 

Tennessee Plateau Research and Education Center, Crossville, Tennessee, March – August 2005 and 2006. 

  Month 

Metrica Yearb April  May  June  July  August 
  x c    SE  x  SE  x  SE  x  SE  x  SE 

Hgt (m) Combined 03.38 C 0.08  0.52 BC 0.08  0.75 AB 0.09  0.74 AB 0.08  0.87 A 0.10 
 2005 0.30 C 0.07  0.42 BC 0.09  0.71 AB 0.11  0.5 AB 0.09  0.80 A 0.11 
 2006 0.45 B  0.11  0.61 AB 0.08  0.80 AB 0.09  0.84 A 0.11  0.95 A 0.12 

HC Combined 44.74 C 6.61  51.15 BC 5.98  58.36 ABC 4.21  69.54 AB 3.27  76.69 A 3.79 
 2005  41.70 BC 7.15  40.11 C  5.84  52.27 ABC 6.14  62.57 AB 4.73  70.61 A 3.69 
 2006 47.78 B 7.17  62.20 AB 6.72  64.45 AB 3.67  76.50 A 4.26  82.77 A 5.58 

VS Combined 19.54 C 4.21  25.86 BC 4.91  43.03 A 5.71  41.86 AB 4.96  45.93 A 5.47 
 2005 16.72 B 4.62  23.91 AB 7.65  45.68 A 8.37  41.12 A 7.08  46.13 A 6.02 
 2006 22.37 B 5.61  27.81 AB 3.75  40.39 AB 3.99  42.60 A 5.69  45.73 A 5.46 

Richness Combined 3.47 A 0.44  4.86 A 0.45  4.72 A 0.31  4.70 A 0.37  4.42 A 0.39 
 2005 3.53 A 0.82  4.28 A 0.67  4.38 A 0.49  4.66 A 0.38  3.78 A 0.43 
 2006 3.41 B 0.14  5.44 A 0.46  5.06 AB 0.58  4.75 AB 0.42  5.06 AB 0.50 

SC (lbs/in2) 2006 . .  263.25 B 51.95  520.85 A 55.3  460.09 AB 92.01  450.90 AB 56.95 
aHgt = mean plant height, HC = percent horizontal cover, VS = percent vertical structure, Richness = plant species 

richness, SC = soil compaction. 

bCombined = data averaged across years. 
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Table 15 (continued). 

cMeans within rows followed by unlike letters are different by repeated-measures analysis-of-variance and Tukey’s HSD 

test for all tests, except soil compaction where analysis-of-covariance was used with distance from the wetland as the covariate.
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Table 16.  Multiple linear regression models predicting mean daily capture of 

postmetamorphic amphibians using various environmental co-factors of cattle land use and 

larval abundance at eight wetlands on the University of Tennessee Research and Education 

Center on the Cumberland Plateau, Crossville, Tennessee, March – August 2005. 

  Parameter Estimates     
Speciesa Metricb,c Un-standardized Standardized t P VIFd Partial 

R2 
BUAM Intercept 0.02263 0 12.68 0.001 0 . 

 Cattle 0.00040 1.20 39.49 <0.001 2.13 0.826 
 NO2

 -0.39402 -0.38 -12.14 0.001 2.27 0.136 
 Turbidity -0.00019 -0.28 -9.18 0.003 2.07 0.031 
 PO4 -0.02826 -0.11 -3.57 0.038 2.27 0.006 

BUFO Intercept 0.13548 0 6.09 0.009 0 . 
 NH3

 0.02891 0.89 17.50 <0.001 1.70 0.769 
 NO2

 -0.22427 -0.57 -11.87 0.001 1.54 0.170 
 PH -0.02021 -0.35 -6.12 0.009 2.12 0.048 
 BUFOL 0.00032 0.11 2.36 0.099 1.37 0.008 

PSCR Intercept -0.00826 0 -1.75 0.140 0 . 
 SC -0.00002 -0.78 -4.25 0.008 1.00 0.638 
 PH 0.00171 0.44 2.39 0.063 1.00 0.193 

RACA Intercept -0.00785 0 -2.00 0.116 0 . 
 RACAL 0.00074 1.08 17.49 <0.001 1.23 0.916 
 HC 0.00026 0.25 4.04 0.016 1.23 0.053 
 SC -0.00004 -0.14 -2.43 0.072 1.01 0.018 

RAPA Intercept -0.00353 0 -3.19 0.033 0 . 
 RAPAL 0.00006 0.93 40.14 <0.001 1.26 0.976 
 Turbidity 0.00004 0.23 6.38 0.003 3.10 0.019 
 VS 0.00006 0.11 2.89 0.045 3.11 0.004 

RASP Intercept -0.1306 0 -25.45 0.002 0 . 
 NH3

 0.1569 1.34 77.08 <0.001 5.15 0.782 
 PO4

 -0.0305 -0.45 -32.93 <0.001 3.16 0.169 
 Hgt 0.1569 0.06 25.30 0.002 5.43 0.038 
 NO2

 -0.0295 -0.16 -8.31 0.014 2.77 0.010 
 PRich 0.0004 0.06 5.95 0.027 1.63 0.002 

aBUAM = American toad (Bufo americanus), BUFO = Fowler’s toad (B. fowleri), 

PSCR = spring peeper (Pseudacris crucifer), RACA = American bullfrog (Rana 

castesbeiana), RAPA = pickerel frog (R. palustris), RASP = southern leopard frog (R. 

sphenocephala). 
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Table 16 (continued). 

bMetrics retained by stepwise selection using entry and stay significance levels at 

α = 0.1; all overall F-tests on final models were significant (P ≤ 0.012) and coefficients of 

determination adjusted for number of variables in the model (i.e., R2
adj) were 0.997, 0.990, 

0.763, 0.979, 0.997, and 0.999 for BUAM, BUFO, PSCR, RACA, RAPA, and RASP, 

respectively. 

cRetained water quality variables were NO2, NH3, PO4, pH, turbidity, and specific 

conductivity (SC); Cattle = mean number of heard / ha of wetland and BUFOL, RACAL, 

RAPAL were BUFO, RACA, and RAPA larval abundance; vegetation variables were 

plant height, mm (Hgt), percent horizontal cover (HC),  percent vertical structure (VS), 

and plant species richness (PRich). 

 dVIF = variance inflation factor where VIF >10 was suggestive of a linear 

dependency between ≥1 variables (Freund and Littell 2000). 
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Table 17.  Multiple linear regression models predicting mean daily capture of 

postmetamorphic amphibians using various environmental co-factors of cattle land use and 

larval abundance at eight wetlands on the University of Tennessee Research and Education 

Center on the Cumberland Plateau, Crossville, Tennessee, March – August 2006. 

  Parameter Estimates     
Speciesa Metricb,c Un-standardized Standardized t P VIFd Partial 

R2 
BUAM Intercept -0.04016 0 -3.45 0.026 0 . 

 Turbidity 0.00010 1.2961 20.16 <0.001 2.51 0.903 
 NH3

 -0.00575 -0.3557 -6.79 0.002 1.67 0.071 
 Temp 0.00194 0.1855 3.45 0.026 1.75 0.020 

BUFO Intercept -0.11230 0 -3.71 0.014 0 . 
 VS -0.00099 -1.1094 -13.73 <0.001 1.28 0.854 
 Temp 0.00748 0.3940 4.88 0.005 1.28 0.121 

RACA Intercept 0.03167 0 5.89 0.002 0 . 
 SC -0.00043 -1.2918 -6.66 0.001 2.19 0.771 
 NO2

 0.18056 0.5609 2.89 0.034 2.19 0.143 
RACL Intercept 0.25476 0.0400 6.37 <0.001 0 . 

 SC -0.00199 0.0004 -5.22 0.002 1.00 0.819 
RAPA Intercept 0.01305 0 4.28 0.008 0 . 

 RAPAL 0.00153 0.9695 11.05 <0.001 1.01 0.884 
 SC -0.00009 -0.2803 -3.20 0.024 1.01 0.078 

RASP Intercept -0.2588 0 -1.35 0.225 0 . 
 NH3

 0.07585 0.7215 2.55 0.043 1.00 0.521 
aBUAM = American toad (Bufo americanus), BUFO = Fowler’s toad (B. fowleri), 

RACA = American bullfrog (Rana castesbeiana), RACL = green frog (R. clamitans), 

RAPA = pickerel frog (R. palustris), RASP = southern leopard frog (R. sphenocephala).  

bMetrics retained by stepwise selection using entry and stay significance levels at 

α = 0.1; all overall F-tests on final models were significant (P ≤ 0.043) and coefficients 

of determination adjusted for number of variables in the model (i.e., R2
adj) were 0.989, 

0.964, 0.880, 0.789, 0.947, and 0.441 for BUAM, BUFO, RACA, RACL, RAPA, and 

RASP, respectively.
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Table 17 (continued). 

cRetained water quality variables were NO2, NH3, turbidity temperature (Temp), 

and specific conductivity (SC); RAPAL = RAPA larval abundance; vegetation variables 

were percent vertical structure (VS). 

dVIF = variance inflation factor where VIF >10 was suggestive of a linear 

dependency between ≥1 variables (Freund and Littell 2000). 
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Table 18.  Prevalence of histological changes in green frog (Rana clamitans) metamorphsa 

collected at cattle-access and non-access wetlands on the University of Tennessee Plateau 

Research and Education Center, Crossville, Tennessee, June 2005. 

 Land-use Type 
Organ 

 
Histological Change Accessb  Non-access 

Cutaneous Parasitic cysts 0 A  0.05 A 
Liver Lymphoid Aggregates 0.53 A  0.75 A 
Liver Granulomas 0.05 A  0.05 A 
Liver Eosinophilic Infiltrates 0 A  0.1 A 
Liver Extramedullary 

hematopoiesis 
0.32 A  0.15 A 

Spleen Lymphoid Depletion 0.05 A  0 A 
Kidney Tubular Epithelium 

Degeneration (droplets) 
0.05 A  0.25 A 

Kidney Eosinophilic Infiltrates 0.26 A  0.65 B 
Kidney Extramedullary 

Hematopoiesis 
0.63 A  0.75 A 

Kidney Myxosporidia 0.32 A  0.25 A 
Kidney Parasitic cysts 0.21 A  0.15 A 
Pancreas Vacuolation 0.05 A  0 A 
Small Intestine Inflammatory cells 0.79 A  0.85 A 
Large Intestine Inflammatory cells 0.79 A  0.85 A 
Skeletal Muscle Parasitic cysts 0.11 A  0.1 A 
Skeletal Muscle Ichthyophonus 0.05 A  0.1 A 
Lungs Granulomas 0.05 A  0 A 
Lungs Parasitic cysts 0.05 A  0 A 
Cloacal Parasites in lumen 0.05 A  0 A 
Fat Steatitis 0.05 A  0.05 A 
 

aTotal sample size was n = 40 metamorphs; access n = 19 and non-access n = 21. 

bProportions within rows followed by unlike letters are different (P < 0.02) by Z- 

tests for liver granulomas, kidney eosinophilic infiltrates, kidney extramedullary 

hematopoiesis, and kidney myxosporidia; Fisher’s Exact test was used on all other tests 

(i.e., expected frequency was <5).  
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Table 19.  Prevalence of bacteria isolates associated with green frog (Rana clamitans) 

metamorphsa collected at cattle-access and non-access wetlands on the University of 

Tennessee Plateau Research and Education Center, Crossville, Tennessee, June 2005. 

 Land-use Type 
Bacteriab Respiration Type Accessc  Non-access 

Achromobacterxylosoxidans Aerobic 0.05 A  0.05 A 
Acinetobacter spp. baumannii Aerobic 0 A  0.10 A 
Acinetobacter lwoffi Aerobic 0.05 A  0 A 
Aeromonas hydrophila Facultatively anaerobic 0.32 A  0.15 A 
Chyseobacterium meningosepticum Aerobic 0 A  0.15 A 
Delftia acidovorans Aerobic 0.11 A  0 A 
Enterobacter amnigenus Facultatively anaerobic 0 A  0.15 A 
Hafnia alvei Facultatively anaerobic 0.11 A  0 A 
Ochrobactrum anthropi Aerobic 0.05 A  0 A 
Pantoea agglomerans Facultatively anaerobic 0 A  0.05 A 
Pseudomonas spp. Aerobic 0.21 A  0.05 A 
Ralstonia pickettii Aerobic 0 A  0.05 A 
Yokenella regensburgei Aerobic 0 A  0.05 A 

aTotal sample size was n = 40 metamorphs; access n = 19 and non-access n = 21. 

bBacteria were isolated from abdominal swabs and pooled organs. 

cProportions with rows followed by unlike letters are different by Fisher’s Exact 

test.  
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Table 20.  Prevalence of parasites in tissues from green frog (Rana clamitans) 

metamorphsa collected at cattle-access and non-access wetlands on the University of 

Tennessee Plateau Research and Education Center, Crossville, Tennessee, June 2005. 

aTotal sample size was n = 40 metamorphs; access n = 19 and non-access n = 21. 

bParasite = parasites that were unable to be identified to taxa because only 

remnants remained. 

cProportions within rows followed by unlike letters are different by Fisher’s Exact 

test.  

 Land-use Type 
Taxab Accessc  Non-access 

Parasite 10.53 A  0 A 
Cestode 26.32 A  25.0 A 
Ichthyophonus 5.26 A  10.0 A 
Trematode 5.26 A  0 A 
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Table 21.  Parasitic load in feces from green frog (Rana clamitans) metamorphsa collected 

at cattle-access and non-access wetlands on the University of Tennessee Plateau Research 

and Education Center, Crossville, Tennessee, June 2005. 

aTotal sample size was n = 40 metamorphs; access n = 19 and non-access n = 21. 

bMean fecal loads within rows with unlike letters are different by Wilcoxon two-

sample test (i.e., normality was violated; Shapiro-Wilk test).  

 
 
 

 Land-use Type 
Taxa Access  Non-access 

 x b SE  x  SE 
Amoeba 0.05 A 0.23  0 A 0 
Nematode 0.05 A 0.23  0.05 A 0.22 
Protozoan  0 A 0  0.05 A 0.22 
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Table 22.  Prevalence of malformation types in malformed amphibiansa,b captured in pitfall 

traps between cattle land uses at eight wetlands on the University of Tennessee Plateau 

Research and Education Center, Crossville, Tennessee, March – August 2005 and 2006. 

Malformation Land-use Type 
Typec Accessd  Non-Access 

Amelia 0.11 A  0.04 A 
Anophthalmia 0.11 A  0.04 A 
Brachydactyly 0.17 A  0 B 
Ectrodactyly 0 A  0.14 A 
Ectromelia 0 A  0.14 A 
Hemimelia 0.06 A  0 A 
Iris Abnormal 0 A  0.11 A 
Micrognathia 0 A  0.07 A 
Microphthalmia 0.06 A  0.18 A 
Polydactyly 0 A  0.04 A 
Polymelia 0 A  0.04 A 
Miscellaneous 0.28 A  0.14 A 
Injury 0.17 A  0 B 

aTotal sample size was n = 36 malformed individuals; access n = 15 and non-

access n = 21. 

bSpecies collected were American bullfrogs (Rana catesbeiana), American toads 

(Bufo americanus), Fowler’s toads (Bufo fowleri), green frogs (Rana clamitans), pickerel 

frogs (R. palustris), and southern leopard frogs (R. sphenocephala). 

cMalformations were classified as per the USGS Field Guide to Malformations of 

Frogs and Toads (Meteyer 2000); miscellaneous malformations were lack of thigh or calf 

muscles, immobile joints, bone projections and missing webbing between hind digits. 

dProportions within rows followed by unlike letters are different by Fisher’s Exact 

test. 
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Table 23.  Bacteria cultured from five injured amphibians opportunistically collected from 

cattle-access and non-access wetlands on the University of Tennessee Plateau Research 

and Education Center, Crossville, Tennessee, March – August 2005 and 2006. 

aBacteria marked with an “*” were not previously found in pathogen sampling of 

green frog metamorphs in June 2005 (Table 19). 

 

  Specimensb,c,d 
  Access Non-access 

Bacteriaa Respiration 
Type 

BUAM 1  BUAM 2  RACL 1 RASP 1 BUAM 3  

Aeromonas hydrophila Facultatively 
anaerobic 

  X   

Brevibacterium spp.* Aerobic ⊗     
Chryseobacterium      
    indologenes* 

Aerobic X    X 

Chyseobacterium  
    meningosepticum 

Aerobic X     

Citrobacter freundii* Aerobic    X  
Clostridium perfringens  
    Type A* 

Anaerobic     X 

Corynebacterium species* Aerobic X     
Delftia acidovorans Aerobic ⊗     
Empedobacter brevis* Aerobic X     
Escherichia coli* Facultatively 

anaerobic 
X     

Hafnia alvei Facultatively 
anaerobic 

X     

Leifsonia aquatica* Aerobic     X 
Moraxella osloensis* Aerobic X     
Morganella morganii* Aerobic X     
Pantoea agglomerans Facultatively 

anaerobic 
     

Pseudomonas  
    fluorenscens* 

Aerobic X X    

Pseudomonas mendocina* Aerobic X     
Pseudomonas stutzeri* Aerobic X X    
Psychrobacter  
    phenylpyruvica* 

Aerobic X     

Ralstonia pickettii* Aerobic X     
Shewanella putrefaciens* Anaerobic X  X   
Staphylococcus  
    epidermidis* 

Aerobic     X 

Stenotrophomonas  
    maltophilia* 

Aerobic X     

Yokenella regensburgei Aerobic    X  
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Table 23 (continued). 

bBUAM = American toad (Bufo americanus), RACL = green frog (R. clamitans), 

and RASP = southern leopard frog (R. sphenocephala); BUAM 1, BUAM 2, RACL 1, and 

RASP 1 were collected at cattle-access wetlands and BUAM 3 was collected at a non-

access wetland. 

cBUAM 1 had facial ecchymosis, BUAM 2 had a swollen midshaft right rear 

distal limb, BUAM 3 had multiple dermal lesions, RACL 1 had immobile joints in the 

right rear limb, RASP 1 had 2 swellings on the right rear limb. 

d⊗ = Bacteria was isolated from cutaneous lesions and either internal organs or 

abdominal swab. 
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Table 24.  Multiple linear regression models predicting total abundance of 

postmetamorphic amphibians using landscapea metrics of a 1-km buffer surrounding each 

of eight wetlands on the University of Tennessee Research and Education Center on the 

Cumberland Plateau, Crossville, Tennessee, March – August 2005 and 2006. 

aLandscapes (n = 8) were plots extending 1-km from the perimeter of each study 

wetland. 

bBUFO = American toad (Bufo americanus) and Fowler’s toad (B. fowleri), RACA 

= American bullfrog (Rana catesbeiana), RACL = green frog (R. clamitans), RAPA = 

pickerel frog (R. palustris), RASP = southern leopard frog (R. sphenocephala). 

  Estimates     
Speciesb,c Metricd,e Un-standardized Standardized t P VIFf Partial 

R2 
BUFO Intercept 506.20 0 4.83 0.005 0 . 

 ME -50.57 -0.98 -4.52 0.006 1.20 0.595 
 WNN -0.24 -0.50 -2.33 0.068 1.20 0.210 

RACA Intercept -122.09 0 -2.83 0.030 0 0 
 PLC 70.48 0.81 3.33 0.016 1.00 0.649 

RACL Intercept -2250.72 0 -8.73 0.003 0 . 
 WNN -1.27 -1.12 -20.70 <0.001 1.35 0.608 
 IJI 26.71 0.75 12.82 0.001 1.59 0.256 
 MNN 5.21 0.30 5.46 0.012 1.42 0.082 
 WSI 89.54 0.24 4.69 0.018 1.18 0.048 

RAPA Intercept -339.27 0 -16.87 0.004 0 . 
 MNN 1.34 0.61 14.86 0.005 2.09 0.607 
 PLC 47.60 0.66 18.42 0.003 1.61 0.284 
 NW -3.64 -0.60 -9.29 0.011 5.30 0.065 
 ME 5.26 0.33 7.13 0.019 2.71 0.035 
 WA 8.33 0.17 2.97 0.097 4.03 0.007 

RASP Intercept -1005.78 0 -2.58 0.049 0 . 
 MNN 5.08 0.59 2.54 0.052 1.08 0.529 
 WA 95.11 0.49 2.13 0.087 1.08 0.224 
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Table 24 (continued). 

cAmerican toads (Bufo americanus) and Fowler’s toad (B. fowleri) were 

combined under the species BUFO because metamorphs of these two species were 

indistinguishable in the field. 

dLandscape metrics retained by stepwise selection process using entry and stay 

significance levels at α = 0.1; all overall F-tests on final models were significant (P ≤ 

0.030) and coefficients of determination adjusted for number of variables in the model 

(i.e., R2
adj)= 0.728, 0.590, 0.985, 0.994, 0.654 for BUFO,  RACA, RACL, RAPA, and 

RASP, respectively. 

eME =  Mean number of edges to cross from the study wetland to surrounding 

wetlands, WNN = nearest-neighbor distance from study wetland to surrounding, PLC = 

percent land cover of wetlands, IJI = interspersion/juxtaposition index of wetlands, MNN 

= mean nearest-neighbor distance from each wetland to all others, NW = number of 

wetlands, WA = area of wetland (ha). 

fVIF = variance inflation factor where VIF >10 is suggestive of a linear 

dependency between ≥1 variable (Freund and Littell 2000). 

 



www.manaraa.com

 172

Table 25.  Multiple linear regression models predicting total abundance of 

postmetamorphic amphibians using landscapea metrics of a 0.5-km buffer surrounding 

each of eight wetlands on the University of Tennessee Research and Education Center on 

the Cumberland Plateau, Crossville, Tennessee, March – August 2005 and 2006. 

aLandscapes (n = 8) were plots extending 0.5-km from the perimeter of each study 

wetland. 

bBUFO = American toad (Bufo americanus) and Fowler’s toad (B. fowleri), 

RACA = American bullfrog (Rana catesbeiana), RACL = green frog (R. clamitans), 

RAPA = pickerel frog (R. palustris), RASP = southern leopard frog (R. sphenocephala). 

cAmerican toads (Bufo americanus) and Fowler’s toad (B. fowleri) were 

combined under the species BUFO because metamorphs of these two species were 

indistinguishable in the field.

  Estimates     
Speciesb,c Metricd,e Un-

standardized 
Standardized t P VIFf Partial 

R2 
BUFO  Intercept 257.00 0 2.90 0.027 0 . 

 LSI -24.42 -0.72 -2.57 0.042 1.00 0.524 
RACA Intercept 289.80 0 11.56 <0.001 0 . 

 ME 16.15 1.08 14.66 <0.001 2.83 0.683 
 PLC -9.28 -1.10 -15.51 <0.001 2.59 0.293 
 SEI 144.20 0.21 2.90 0.044 2.64 0.016 

RACL Intercept -1854.68 0 -2.37 0.064 0 . 
 WNN -1.66 -1.47 -4.71 0.005 3.04 0.608 
 PLC 45.39 0.84 2.70 0.043 3.04 0.233 

RAPA Intercept 342.32 0 4.42 0.005 0 . 
 SEI -495.66 -0.87 -4.25 0.005 1.00 0.751 

RASP Intercept 892.17 0 4.19 0.009 0 . 
 SEI 3.24 -0.78 -6.72 0.001 1.07 0.783 
 IJI -1749.39 0.40 3.47 0.018 1.07 0.153 
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Table 25 (continued). 

dLandscape metrics retained by stepwise selection process using entry and stay 

significance levels at α = 0.1; all overall F-tests on final models were significant (P ≤ 

0.042) and coefficients of determination adjusted for number of variables in the model 

(i.e., R2
adj)= 0.445, 0.987, 0.776, 0.710, 0.911 for BUFO, RACA, RACL, RAPA, and 

RASP, respectively. 

eLSI = landscape shape index, ME =  mean number of edges to cross from the 

study wetland to surrounding wetlands, PLC = percent land cover of wetlands, SEI = 

Shannon evenness index of landcover, WNN = nearest-neighbor distance from study 

wetland to surrounding wetlands, WA = area of wetland (ha),  IJI = 

interspersion/juxtaposition index of wetlands. 

fVIF = variance inflation factor where VIF >10 is suggestive of a linear 

dependency between ≥1 variable (Freund and Littell 2000). 
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Figure 1.  Cattle access (1 – 4) and non-access (5 – 8) wetlands at the University of 

Tennessee Plateau Research and Education Center, Cumberland County, Tennessee, 

USA, 2004.
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Figure 2.  Schematic of postmetamorphic amphibian sampling at study wetlands on the 

University of Tennessee Plateau Research and Education Center, Crossville, Tennessee, 

2005 – 2006. 
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Figure 3.  Species composition and total richness (S) of amphibians captured in pitfalls 

between cattle land uses at eight wetlands on the University of Tennessee Plateau 

Research and Education Center, Crossville, Tennessee, March – August 2005 (a) and 

2006 (b). 
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a) 

 

b) 

 

Figure 4.  Relationship between mean soil compaction and position (i.e., distance, m) that 

measurements were taken from the shoreline at four non-access (a) and four cattle-access 
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Figure 4 (continued). 

(b) wetlands on the University of Tennessee Plateau Research and Education Center, 

Crossville, Tennessee, March – August 2006.
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Figure 5.  Species composition and total richness (S) of amphibians captured in pitfalls among months at eight wetlands on the 

University of Tennessee Plateau Research and Education Center, Crossville, Tennessee, March – August 2005.
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Figure 6.  Species composition and total richness (S) of amphibians captured in pitfalls among months at eight wetlands on the 

University of Tennessee Plateau Research and Education Center, Crossville, Tennessee March – August 2006.
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Figure 7.  Rasterized land cover types of the landscape extent used in amphibian analyses 

overlaid on the digital orthophoto quadrangle for Cumberland County, Tennessee, 2004.
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a) 

 
b) 

 
Figure 8.  Canonical correspondence analysis of relative amphibian abundance (natural-

log transformed) and landscape metrics of a 1-km landscape around each of eight  
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Figure 8 (continued). 

wetlands at the University of Tennessee Plateau Research and Education Center, 

Crossville, Tennessee, March – August 2005 and 2006.  (a) Species-environmental biplot 

where the length of eigenvectors represents the strength of the correlation between each 

landscape variable and the pattern of amphibian community composition; species closest 

to an eigenvector are most strongly associated with the corresponding landscape metric; 

ED =  edge density, IJI = interspersion/juxtaposition index of wetlands, MNN = mean 

nearest-neighbor distance from each wetland to all others, PLC = percent land cover of 

wetlands, PR = patch richness, SI = wetland shape index, WNN = nearest-neighbor 

distance from study wetland to surrounding wetlands; Amphibian species were: BUFO = 

American toad (Bufo americanus) and Fowler’s toad (B. fowleri), RACA = American 

bullfrog (Rana catesbeiana), RACL = green frog (R. clamitans), RAPA = pickerel frog 

(R. palustris), RASP = southern leopard frog (R. sphenocephala).  (b) Inferred ranking of 

species with significant landscape variables based on interpretation from biplots (see 

Figure 7 part a); the ranking was determined after extending the end of each eigenvector 

through the origin of the biplot and drawing intersecting orthogonal lines from each 

species to the eigenvector; the vertical segment bisecting each inferred ranking represents 

the origin of the biplot; species closer to the arrowhead end of the eigenvector are more 

positively correlated to with that landscape metric; conversely, species closer to the blunt 

end of the eigenvector are more negatively related with the landscape metric.  
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a) 

 
b) 

 
Figure 9.  Canonical correspondence analysis of relative amphibian abundance (natural-

log transformed) and landscape metrics of a 0.5-km buffer around each of eight wetlands  
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Figure 9 (continued). 

at the University of Tennessee Plateau Research and Education Center, Crossville, 

Tennessee, March – August 2005 and 2006. (a) Species-environmental biplot where the 

length of eigenvectors represents the strength of the correlation between each landscape 

variable and the pattern of amphibian community composition; species closest to an 

eigenvector are most strongly associated with the corresponding landscape metric; ED =  

edge density, IJI = interspersion/juxtaposition index of wetlands, MNN = mean nearest-

neighbor distance from each wetland to all others, PR = patch richness, SEI = Shannon 

evenness index of landcover, WA = area of wetland (ha), WNN = nearest-neighbor 

distance from study wetland to surrounding wetlands; Amphibian species were: BUFO = 

American toad (Bufo americanus) and Fowler’s toad (B. fowleri), RACA = American 

bullfrog (Rana catesbeiana), RACL = green frog (R. clamitans), RAPA = pickerel frog (R. 

palustris), RASP = southern leopard frog (R. sphenocephala).  (b) Inferred ranking of 

species with significant landscape variables based on interpretation from biplots (see 

Figure 8 part a); the ranking was determined after extending the end of each eigenvector 

through the origin of the biplot and drawing intersecting orthogonal lines from each 

species to the eigenvector; the vertical segment bisecting each inferred ranking represents 

the origin of the biplot; species closer to the arrowhead end of the eigenvector are more 

positively correlated to with that landscape metric; conversely, species closer to the blunt 

end of the eigenvector are more negatively related with the landscape metric. 
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APPENDIX II 

PATHOGEN TESTING PROCEDURES 
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Bacterial, viral, and parasitic testing procedures.  All sections below were written under 

the guidance of Dr. Debra Miller. 

Histology.—These analyses were performed by Dr. Debra Miller and the UGA 

VDIL staff.  Formalin-fixed tissues were routinely processed and embedded in paraffin 

blocks.  One or more 5 μm sections were cut from each block and placed on glass slides.  

The slides were stained with hemotoxylin and eosin, Gram, and Kinyoun’s acid-fast, and 

examined using light microscopy for evidence of histological changes suggestive of 

disease (Prophet et al. 1994). 

Bacterial cultures.—These analyses were performed by Dr. Sreekumari Rajeev, 

Cindy Watson and Jill Johnson of UGA VDIL.  Bacterial culture and identifications were 

performed using standard operating protocols outlined in Isenberg (1998), Murray et al. 

(2003) and Quinn et al. (1994).  Sections of internal organs (≤1 cm in diameter) were 

pooled and homogenized to test for all bacterial pathogens.  For isolation of aerobic 

bacteria, the samples were inoculated onto Tryptic Soy Agar with 5% sheep blood 

(Remel Inc., Lenexa, Kansas, USA) and incubated at 29oC for 18 – 24 hrs.  Colonies of 

target species were subcultured to obtain a pure culture and identified using light 

microscopy.  Primary inoculation plates were maintained for at least 48 – 72 hrs for 

possible detection of slower growing bacteria.   

For isolation of anaerobic bacteria, the samples were inoculated onto Phenylethyl 

Alcohol Agar with 5% sheep blood.  Inoculated plates were incubated at 37ºC in a Forma 

Scientific 1024 Anaerobic System (Thermo Fisher Inc., Waltham, Massachusetts, USA).  

The cultures were maintained for 5 days and observed each day for the presence of any 

bacteria. 
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For detection and isolation of Salmonella spp., the samples were inoculated onto 

Hektoen Enteric Agar (HE, Remel Inc., Lenexa, Kansas, USA) and into Tetrathionate 

broth (Remel Inc., Lenexa, Kansas, USA).  Inoculated HE plates were incubated in an 

aerobic incubator at 29°C, and after 18 – 24 hrs they were examined for the presence of 

Salmonella spp. colonies.  Inoculated Tetrathionate broth also was subcultured onto 

additional HE plates, incubated under the same conditions, and checked for Salmonella 

colonies after 18 – 24 hrs.  Suspect colonies were subcultured onto Tryptic Soy Agar with 

5% sheep blood to obtain a pure culture for identification using light microscopy.  

Additionally, tissues were tested for Listeria monocytogenes.  Samples were 

inoculated onto Polymyxin B-acrivlavine-lithium chloride-ceftazidime-esculin-mannitol 

(PALCAM) agar (The Oxoid group, Basingstoke, Hampshire, United Kingdom), which is 

a selective media for Listeria spp.  Cultures were incubated in a CO2 incubator at 29oC 

for 24 – 48 hours then examined for Listeria colonies.   Any suspect colonies were 

subcultured onto Tryptic Soy Agar with 5% sheep blood and identified.  All isolates were 

speciated either by using an automated bacterial identification system (Sensititer, Trek 

Diagnostic Systems, Westlake, Ohio, USA) or conventional biochemical testing 

including RapID systems (Remel, Inc., Lenexa, Kansas, USA) and API systems 

(BioMerieux., Inc., Durham, North Carolina, USA).  

Pooled tissue samples also were cultured to determine the presence of Leptospira 

spp.  The samples were serially diluted in bovine serum albumin buffer (Fisher Scientific 

International, Inc., Pittsburgh, Pennsylvania, USA) and inoculated into Ellinghausen-

McCullough-Johnson-Harris (EMJH) semisolid media containing fluorouracil as a 

decontaminant (Bectron, Dickinson & Company, Franklin Lakes, New Jersey, USA).  
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The cultures were incubated at 29oC for 8 weeks.  The tubes were monitored throughout 

the incubation period for the presence of a “dinger zone,” which commonly occurs with 

Leptospira spp.  The dinger zone can be described as a discrete band that develops ca. 3 

mm below the surface of the medium (Murray et al. 2003).  Colonies associated with 

dinger zones were inspected using darkfield microscopy for Leptospira spp.   

To detect Mycobacterium paratuberculosis, the intestinal tissue of each 

metamorph was mixed with 35 ml of water, and 5 ml of the resulting supernatant was 

transferred to a 0.9% hexadecylpyridinium chloride (HPC) solution (Sigma–Aldrich, 

Atlanta, Georgia, USA) prepared with half strength (i.e. diluted in distilled water) brain-

heart infusion (BHI) broth (Bectron, Dickinson & Company, Franklin Lakes, New Jersey, 

USA).  After overnight incubation and centrifugation at 3000 x g, samples were 

transferred to an antibiotic solution prepared with BHI.  After overnight incubation, 

samples were inoculated into ESP para-JEM broth (Trek Diagnostics, Westlake, Ohio, 

USA) containing supplements as recommended by the manufacturer, then placed in the 

ESP Culture System II instrument (Trek Diagnostics, Westlake, Ohio, USA).  Samples 

were incubated until the instrument detected gas production by any bacteria able to 

survive the growth media, indicating a positive signal, or until 42 days had passed.  All 

signal positive samples were acid-fast stained and confirmed for the pathogen using PCR 

as per UGA Tifton Veterinary Diagnostic and Investigational Laboratory standard 

operating procedure for Mycobacterium paratuberculosis.  Similarly, all signal negative 

samples were acid-fast stained after 42 days of incubation, and all acid-fast positive 

samples were confirmed by PCR. 
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Virus isolation.—These analyses were performed by Dr. Charles Baldwin and the 

UGA VDIL staff.  The subset of lung, kidney, spleen, brain, skin, skeletal muscle, heart, 

intestines, stomach and liver samples that were frozen for virus isolation were used to 

make a 10% tissue homogenate in minimal essential medium (MEM) containing 1% 

gentamycin (Sigma–Aldrich, Atlanta, Georgia, USA).  The homogenate was centrifuged 

at 2000 x g for 15 minutes at 4°C.  The supernatant was collected and filtered through a 

0.2 μ filter (Fisher Scientific, Pittsburgh, Pennsylvania, USA) directly onto confluent 

monolayers of a variety of cell lines, including fathead minnow (FHM), white sturgeon 

skin (WSSK), Chinese catfish ovary (CCO), and epithelioma papilloma cyprini cells 

(EPC).  Inoculated cultures were incubated at 22.5°C, and examined microscopically 

daily for two weeks for viral cytopathic effect (CPE).  At the end of the two weeks, 

material from the first inoculation was transferred to a second confluent monolayer of 

cells and examined daily for an additional 2 weeks.  Cultures that did not demonstrate 

CPE at the end of the 4-week period were deemed negative.  Cultures showing CPE were 

harvested and amplified further by inoculating small tissue culture flasks (25 cm2) 

containing MEM.  Random isolates were verified by electron microscopy (procedures 

below).  

Electron microscopy of fecal samples.—These analyses were performed by Dr. 

Eloise Styer of the UGA VDIL.  Fecal samples were examined using negative stain 

electron microscopy.  Samples were diluted with distilled water to make a 15 – 20% 

suspension.  The suspension was subjected to two cycles of freezing and thawing with 

liquid nitrogen.  Each freeze-thaw cycle was followed by homogenization.  The 

suspension was centrifuged for 8 minutes at 12,000 x g, and the resulting supernatant was 
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centrifuged for 30 minutes at 23,000 x g.  The 23,000 x g pellet was resuspended and 

diluted in distilled water until a 25 μl drop was lightly opalescent.  A drop of the diluted 

pellet was mixed with an equal volume of 1.5% phosphotungstic acid (pH = 6.8) and 

placed on Formvar-coated 400 mesh grids (SPI supplies, West Chester, Pennsylvania, 

USA).  Any excess liquid was removed with filter paper, and the grids were allowed to 

air dry briefly (<5 minutes).  The grids were examined for any viruses or virus-like 

particles using a Zeiss EM 900 TEM (Carl Zeiss SMT, Inc., Thornwood, New York, 

USA) at a magnification of 12,000X or greater. 

PCR for Cryptosporidium spp.—These analyses were performed by Dr. Debra 

Miller and Lisa Whittington of the UGA VDIL.  Paraffin-embedded, fresh tissues or fecal 

samples were used for isolation of Cryptosoridium spp.  If fresh tissues were used, 

approximately 1 ml of fresh tissue homogenate was centrifuged to a pellet.  The pellet 

was processed using the QIAamp DNA mini kit (QIAGEN, Valencia, California, USA) 

according to manufacturer specifications, except that 100 μl rather than 200 μl of Buffer 

AE (elution buffer) was used in the final step to minimize dilution of the DNA.   

Paraffin-embedded tissues were used for supportive documentation of 

Cryptosporidium spp.  Genomic DNA was extracted from these samples following the 

protocol of Kattenbelt et al. (2000), which are briefly outlined hereafter.   Five to ten 10-

μm serial sections were taken from blocks, placed in a microcentrifuge tube, and xylene 

(1.5 ml) added.  The sample was vortexed and incubated for 15 minutes at room 

temperature, then centrifuged for 5 minutes and the xylene decanted.  Twice, 1.5 ml of 

100% ethanol was added, and the solution vortexed, centrifuged and the liquid decanted. 

Finally, 1.5 ml of 95% ethanol was added, and the sample vortexed, centrifuged, and 
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liquid decanted.  The residual alcohol was allowed to evaporate by placing the tube in a 

37°C incubator for 15 minutes.  Sterile water (250 μl) was added to the sample, and it 

was subjected to five replications of a freeze-thaw procedure (i.e., 5 min liquid nitrogen, 

5 min boiling water).  DNA was extracted from the sample using the QIAmp DNA Mini 

Kit.  Feces were subjected to the five replications of 5-minute freeze-thaw procedure with 

liquid nitrogen and boiling water.  After this procedure, 1 ml of DNA STAT 60 (Tel-Test 

“B,” Inc., Friendswood, Texas, USA) was added, the sample mixed, and 200 μl of 

chloroform added.  The sample was vortexed, incubated at room temperature for 3 

minutes, centrifuged for 15 minutes at 12,000 x g, and the supernatant removed and 

transferred to a new tube.  This sample was incubated for 10 minutes at room temperature 

with 500 μl of isopropanol, centrifuged for 10 minutes, decanted, and 500 μl 75% ethanol 

added.  Samples were centrifuged and the liquid removed with pipetting.  The pellet was 

dried and resuspended in 50 μl of 100 mM Tris.  The sample was then boiled for 5 

minutes. 

Conserved primers were used for detecting the acetyl coenzyme A synthetase 

gene (390 bp) Cryptosoridium spp. as described by Morgan et al. (2000).  For this 

reaction, 5 μl gDNA (from above extraction protocols) were added to a PCR reaction 

mixture to make a 50 μl total reaction volume containing: 50 mM KCl, 10 mM Tris-HCl 

(pH 8.3), 2.0 mM MgCl2, 200 μM of each doxynucleoside triphosphate (dATP, dCTP, 

dGTP, dTTP), 2.5 U Taq DNA polymerase (Promega Corporation, Madison, Wisconsin, 

USA), 5 μl of each primer, and sterile ddH2O.  Primer sequences were GGA CCT ATT 



www.manaraa.com

 193

GAA TTT GTC AAG G (forward) and GAG TAA TTC TGT GTC TCT CCA C 

(reverse).  PCR products (10 µl) were resolved via electrophoresis on a 1.5% agarose gel.   

Fecal flotation.—These analyses were performed by Dr. Debra Miller, Anita 

Merrill, and others in the UGA VDIL staff.  Fecal samples were used to test for parasites 

and protozoans, including Cryptosporidium spp.  In brief, a mixture of 1 g of feces and 5 

ml of water was strained and mixed with Sheather’s sugar solution (RICCA Chemical 

Company, LLC., Arlington, TX, USA) then allowed to sit for 1 hr with a cover slip 

covering the test tube.  The cover slip was placed on a slide and examined for parasite 

ova and oocysts using light microscopy.  If inadequate fecal material was available to 

perform the flotation, a thin film of fecal material was smeared directly onto a glass slide, 

a drop of Sheather’s solution added, the slide cover-slipped, and examined by light 

microscopy.  

PCR for Ranavirus.—These analyses were performed by Dr. Debra Miller and 

Lisa Whittington of the UGA VDIL.  Initial procedures for Ranavirus PCR followed 

those for Cryptosporidium, except that it was a hemi-nested procedure, with different 

incubation times and primers.  In brief, the first-round reaction mixture (25 μl, total 

volume) contained 50 – 100 pmol of primers FV3-991 (5’ – 

CGCAGTCAAGGCCTTGATGT ) and  FV3-1571R (5’ – 

AAAGACCCGTTTTGCAGCAAAC), 1X PCR buffer (50 mM KCl, 10mM TRIS-HCl 

3nM MgCl2), 0.2 mM of dATP, dCTP, dGTP and DTTP, 1.25 U Taq polymerase 

(Promega Corporation, Madison, Wisconsin, USA), and 2.5 μl of template.  The thermal 

cycler program was 35 cycles with an initial denaturization step of 5 minutes at 94°C 
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followed by 35 cycles of 1 minute at 94°C, 1 minute at 58°C, and 1 minute at 72°C.  The 

final cycle was followed by a 10-minute elongation step at 72°C. 

 The second round reaction (25 μl, total volume) contained the same materials as 

the first round with the exception of the primers.  The primers were P1050N 

(5;TCAAGAGCGCCACGCTGGTGTA) and FV3-1571R.  Only 0.5 μl of the first-round 

product was carried over to the second-round PCR.  For the second round, the thermal 

cycler program was 25 cycles with an initial denaturization step of 10 minutes at 94°C, 

followed by 25 cycles of 1 minute at 94°C, 1 minute at 58°C, and 1 minute at 72°C.  The 

final cycles was followed by a 10-minute elongation at 72°C. 

Ten microlitres of PCR products were resolved via elecrophoresis on a 1.5% 

agarose gel.  Additionally, the resulting amplicons were prepared for sequencing with the 

Stratagene Clearcut Mini-Prep Kit (Stratagene, La Jolla, California, USA) according to 

the manufacturer instructions, and submitted to SeqWright DNA Technology Services, 

Houston, Texas, U.S.A. for automated sequencing.  The reverse primer (FV3-1571R) was 

used for obtaining the reverse sequence; however to obtain the forward sequence, it was 

necessary to develop a second primer that was 17bp, FV3-E5778 (5’ – 

ACTATGCCACCTCCATC).  This primer was developed by SeqWrightDesign, DNA 

Technology Services, Houston, Texas USA (S603624,UGA-1,2,3-CP3).   

Individual sequences were assembled using SeqMan program in the LasterGene 

Sequence Analysis Package (DNASTAR, Inc, Madison, Wisconsin, USA).  A GenBank 

BLAST search was performed (NCBI 2005) on the consensus sequence.  A phylogenetic 

tree and alignment of the consensus sequence and the sequences obtained from the 
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BLAST search were obtained using BLAST tree Widget View.  This search reveals a 

percent identity with the capsid protein gene and the genome. 

Fungal cultures for opportunistically collected individuals.—These analyses were 

performed by Dr. Sreekumari Rajeev, Cindy Watson and Jill Johnson of UGA VDIL.  

Fungal culture and identifications were performed using standard operating protocols 

outlined in Isenberg (1998), Murray et al. (2003) and Quinn et al. (1994).  Swabs were 

taken of gross lesions and inoculated onto Sabouraud Dextrose Agar (Becton, Dickinson 

& Company, Franklin Lakes, New Jersey, USA).  Plates were incubated at room 

temperature for 30 days with daily examination for fungal growth.  If growth was present, 

the fungal colonies were examined microscopically using a Lactophenol Cotton Blue 

stain (Becton, Dickinson & Company, Franklin Lakes, New Jersey, USA ) to determine 

morphology for identification. 

White blood cell count of an opportunistically collected individual.—These 

analyses were performed by Anita Merrill.  A drop (ca. 10 µl) of heart blood was placed 

at one end of the glass slide and the drop spread longitudinally via capillary action using 

another glass slide.  Blood slides were air dried, stained with Wrights and Giemsa 

(Bennett 1970), and the blood smear was examined under oil emersion using light 

microscopy.  A total of 100 white blood cells were counted and the percentage of each 

cell type was calculated.  Morphology of red and white blood cells also was observed for 

any indication of disease. 
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Malformation and trematode testing procedures 

Clearing Procedure.—I performed the following procedures after Hanken and 

Wasserug (1981).  Specimens were skinned, eviscerated and placed in a solution of 

Alcian Blue cartilage stain (Fisher Scientific International, Inc., Pittsburgh, Pennsylvania, 

USA) for 24 hrs.  Specimens were transferred to an ethanol-acetic acid solution (70:30) 

for 1 hr then placed in 100% ethanol for 24 hrs.  Following this, specimens were soaked 

in distilled water overnight and transferred to Trypsin enzyme solution (MP Biomedicals, 

Solon, Ohio, USA) for an additional 24 hrs.  Specimens were transferred from the 

Trypsin solution to Alizarin Red-S bone stain (Fisher Scientific International, Inc., 

Pittsburgh, Pennsylvania, USA) for 24 hrs then rinsed at least twice with 1% KOH  to 

remove excess Alizarin Red.  Specimens then were treated with a graded series of 2:1, 

1:1, and 1:2 of 1% KOH:glycerin.  Specimens remained in each KOH:glycerin solution 

for 4 days.  If the tissues of specimens in the final solution were not clear after 4 days, 

specimens remained in the final solution until tissues were clear.  Specimens were stored 

in 100% glycerin with one crystal of thymol.   

Each cleared specimen was examined for trematode metacercariae using stereo-

microscopy.  Two metamorphs with unilateral ocular malformations were further 

analyzed by removal of the structures from the orbit and examining them using electron 

microscopy (procedure below).  Further, if the electron microscopic examination revealed 

viral particles, PCR was performed using gel electrophoresis to identify the genus 

followed by sequencing to determine the viral species. 

Electron microscopy for orbit structures.—These analyses were performed by Dr. 

Eloise Styer of the UGA VDIL.  Structures were removed from the orbits of two 
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malformed metamorphs and examined by electron microscopy to determine their 

contents.  Each structure was transferred to McDowell and Trump’s modified 

Karnovsky’s fixative (Dykstra 1993), and allowed to stand overnight at room 

temperature.  The following day, the structure was washed in a 2% osmium tetroxide in 

0.1M phosphate buffer (pH 7.3) solution, fixed in 2% osmium tetroxide, dehydrated 

through a graded series of acetone solutions (50 – 100%), and infiltrated with Spurr’s 

resin.  These steps were performed in a laboratory microwave oven (Giberson 2001).  

The resin was polymerized overnight at 70ºC, and sections 0.5 µm and 70 nm thick were 

cut with a diamond knife on a Leica UC6 ultramicrotome (Leica, Wetzlar, Germany) 

for light microscopy and transmission electron microscopy (TEM), respectively.  Light 

microscopic sections were stained with toluidene blue-O (Mikel 1994), whereas sections 

for TEM were stained with uranyl acetate (Hayat 1972) followed by Reynold’s lead 

citrate (Hayat 1972).  Transition electron microscope sections were examined using a 

Zeiss EM 900. 
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APPENDIX III 

REPORTED AMPHIBIAN SPECIES IN CUMBERLAND COUNTY 
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Common name Scientific name 
northern cricket frog Acris crepitans 
American toad Bufo americanus 
Fowler’s toad Bufo fowleri 
eastern narrowmouth toad Gastrophryne carolinensis 
Cope’s gray treefrog Hyla chrysoscelis 
mountain chorus frog Pseudacris brachyphona 
spring peeper Pseudacris crucifer 
upland chorus frog Pseudacris triseriata 
eastern spadefoot Scaphiopus holbrookii 
American bullfrog Rana castesbeiana 
green frog Rana clamitans 
southern leopard frog Rana sphenocephala 
pickerel frog Rana palustris 
spotted salamander Ambystoma maculatum 
marbled salamander Ambystoma opacum 
mole salamander Ambystoma talpoideum 
green salamander Aneides aeneus 
hellbender Cryptobranchus alleganiensis 
dusky salamander Desmognathus fuscus 
mountain dusky salamander Desmognathus ochrophaeus 
Ocoee salamander Desmognathus ocoee 
black mountain salamander Desmognathus welteri 
southern two-lined salamander Eurycea cirrigera 
longtail salamander Eurycea longicauda 
cave salamander Eurycea lucifuga 
spring salamander Gyrinophilus porphyriticus 
four-toed salamander Hemidactylium scutatum 
eastern red-spotted newt Notophthalmus viridescens 
zigzag salamander Plethodon dorsalis 
slimy salamander Plethodon glutinosus 
mud salamander Pseudotriton montanus 
red salamander Pseudotriton ruber 
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